2,508 research outputs found

    Studies on auditory processing of spatial sound and speech by neuromagnetic measurements and computational modeling

    Get PDF
    This thesis addresses the auditory processing of spatial sound and speech. The thesis consists of two research branches: one, magnetoencephalographic (MEG) brain measurements on spatial localization and speech perception, and two, construction of computational auditory scene analysis models, which exploit spatial cues and other cues that are robust in reverberant environments. In the MEG research branch, we have addressed the processing of the spatial stimuli in the auditory cortex through studies concentrating to the following issues: processing of sound source location with realistic spatial stimuli, spatial processing of speech vs. non-speech stimuli, and finally processing of range of spatial location cues in the auditory cortex. Our main findings are as follows: Both auditory cortices respond more vigorously to contralaterally presented sound, whereby responses exhibit systematic tuning to the sound source direction. Responses and response dynamics are generally larger in the right hemisphere, which indicates right hemispheric specialization in the spatial processing. These observations hold over the range of speech and non-speech stimuli. The responses to speech sounds are decreased markedly if the natural periodic speech excitation is changed to random noise sequence. Moreover, the activation strength of the right auditory cortex seems to reflect processing of spatial cues, so that the dynamical differences are larger and the angular organization is more orderly for realistic spatial stimuli compared to impoverished spatial stimuli (e.g. isolated interaural time and level difference cues). In the auditory modeling part, we constructed models for the recognition of speech in the presence of interference. Firstly, we constructed a system using binaural cues in order to segregate target speech from spatially separated interference, and showed that the system outperforms a conventional approach at low signal-to-noise ratios. Secondly, we constructed a single channel system that is robust in room reverberation using strong speech modulations as robust cues, and showed that it outperforms a baseline approach in the most reverberant test conditions. In this case, the baseline approach was specifically optimized for recognition of speech in reverberation. In summary, this thesis addresses the auditory processing of spatial sound and speech in both brain measurement and auditory modeling. The studies aim to clarify cortical processes of sound localization, and to construct computational auditory models for sound segregation exploiting spatial cues, and strong speech modulations as robust cues in reverberation.reviewe

    Exploiting correlogram structure for robust speech recognition with multiple speech sources

    Get PDF
    This paper addresses the problem of separating and recognising speech in a monaural acoustic mixture with the presence of competing speech sources. The proposed system treats sound source separation and speech recognition as tightly coupled processes. In the first stage sound source separation is performed in the correlogram domain. For periodic sounds, the correlogram exhibits symmetric tree-like structures whose stems are located on the delay that corresponds to multiple pitch periods. These pitch-related structures are exploited in the study to group spectral components at each time frame. Local pitch estimates are then computed for each spectral group and are used to form simultaneous pitch tracks for temporal integration. These processes segregate a spectral representation of the acoustic mixture into several time-frequency regions such that the energy in each region is likely to have originated from a single periodic sound source. The identified time-frequency regions, together with the spectral representation, are employed by a `speech fragment decoder' which employs `missing data' techniques with clean speech models to simultaneously search for the acoustic evidence that best matches model sequences. The paper presents evaluations based on artificially mixed simultaneous speech utterances. A coherence-measuring experiment is first reported which quantifies the consistency of the identified fragments with a single source. The system is then evaluated in a speech recognition task and compared to a conventional fragment generation approach. Results show that the proposed system produces more coherent fragments over different conditions, which results in significantly better recognition accuracy

    A physiologically inspired model for solving the cocktail party problem.

    Get PDF
    At a cocktail party, we can broadly monitor the entire acoustic scene to detect important cues (e.g., our names being called, or the fire alarm going off), or selectively listen to a target sound source (e.g., a conversation partner). It has recently been observed that individual neurons in the avian field L (analog to the mammalian auditory cortex) can display broad spatial tuning to single targets and selective tuning to a target embedded in spatially distributed sound mixtures. Here, we describe a model inspired by these experimental observations and apply it to process mixtures of human speech sentences. This processing is realized in the neural spiking domain. It converts binaural acoustic inputs into cortical spike trains using a multi-stage model composed of a cochlear filter-bank, a midbrain spatial-localization network, and a cortical network. The output spike trains of the cortical network are then converted back into an acoustic waveform, using a stimulus reconstruction technique. The intelligibility of the reconstructed output is quantified using an objective measure of speech intelligibility. We apply the algorithm to single and multi-talker speech to demonstrate that the physiologically inspired algorithm is able to achieve intelligible reconstruction of an "attended" target sentence embedded in two other non-attended masker sentences. The algorithm is also robust to masker level and displays performance trends comparable to humans. The ideas from this work may help improve the performance of hearing assistive devices (e.g., hearing aids and cochlear implants), speech-recognition technology, and computational algorithms for processing natural scenes cluttered with spatially distributed acoustic objects.R01 DC000100 - NIDCD NIH HHSPublished versio

    Single-Microphone Speech Separation: The use of Speech Models

    Get PDF
    corecore