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Sound, Mixtures & Learning

 

• Sound

 

- carries useful information about the world
- complements vision

 

• Mixtures

 

- .. are the rule, not the exception
- medium is ‘transparent’ with many sources
- must be handled!

 

• Learning

 

- the speech recognition lesson:
let the data do the work

- ... like listeners do
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The problem with recognizing mixtures

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Auditory Scene Analysis: describing a complex 
sound in terms of high-level sources/events

 

- ... like listeners do

 

• Hearing is ecologically grounded

 

- reflects natural scene properties = constraints
- subjective, not absolute
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Auditory Scene Analysis

 

 

 

(Bregman 1990)

 

• How do people analyze sound mixtures?

 

- break mixture into small 

 

elements

 

 (in time-freq)
- elements are 

 

grouped

 

 in to sources using 

 

cues

 

- sources have aggregate 

 

attributes

 

• Grouping ‘rules’ (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...
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Cues to simultaneous grouping

 

• Elements + attributes

• Common onset

 

- simultaneous energy has common source

 

• Periodicity

 

- energy in different bands with same cycle

 

• Other cues

 

- spatial (ITD/IID), familiarity, ...
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The effect of context

 

• Context can create an ‘expectation’: 
i.e. a bias towards a particular interpretation

• Bregman’s old-plus-new principle:

 

- a change is preferably interpreted as addition

 

• E.g. the continuity illusion
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Approaches to sound mixture recognition

 

• Separate signals, then recognize

 

- e.g. CASA, ICA
- nice, if you can do it

 

• Recognize combined signal

 

- ‘multicondition training’
- combinatorics..

 

• Recognize with parallel models

 

- full joint-state space?
- divide signal into fragments, 

then use missing-data recognition
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Independent Component Analysis (ICA)

 

(Bell & Sejnowski 1995 etc.)

 

• Drive a parameterized separation algorithm to 
maximize independence of outputs

• Advantages:

 

- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

 

• Disadvantages:

 

- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models
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Outline

 

Sound, Mixtures & Learning 
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- Data-driven
- Top-down constraints
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Computational Auditory Scene Analysis:
The Representational Approach

 

(Cooke & Brown 1993)

 

• Direct implementation of psych. theory

 

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 

• Able to extract voiced speech:

input
mixture

signal
features

(maps)

discrete
objects

Front end Object
formation

Grouping
rules

Source
groups

onset

period

frq.mod

time

freq

0.2 0.4 0.6 0.8 1.0 time/s

100

150
200

300
400

600

1000

1500
2000

3000

frq/Hz
brn1h.aif

0.2 0.4 0.6 0.8 1.0 time/s

100

150
200

300
400

600

1000

1500
2000

3000

frq/Hz
brn1h.fi.aif



 

Dan Ellis Scene Analysis for Speech & Audio Recognition 2003-04-16 - 11

 

Adding top-down constraints

 

Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

 

- objects irresistibly appear

 

vs. Prediction-driven (top-down)

 

- match observations 
with parameters of a world-model

- need world-model constraints...
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Prediction-Driven CASA

 

(Ellis 1996)

 

• Explain a complex sound with basic elements
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Aside: Evaluation

 

• Evaluation is a big problem for CASA

 

- what is the goal, really?
- what is a good test domain?
- how do you measure performance?

 

• SNR improvement

 

- tricky to derive from  before/after signals:
correspondence problem

- can do with fixed filtering mask; 
but rewards removing signal as well as noise

 

• Speech Recognition (ASR) improvement

 

- recognizers typically very sensitive to artefacts

 

• ‘Real’ task?

 

- mixture corpus with specific sound events...
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Recognizing Speech in Noise

 

• Standard speech recognition structure:

• How to handle additive noise?

 

- just train on noisy data: ‘multicondition training’
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Tandem speech recognition

 

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

 

• Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

• Combine them!

• Train net, then train GMM on net output

 

- GMM is ignorant of net output ‘meaning’
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Tandem system results

 

• It works very well (‘Aurora’ noisy digits):

 

System-features Avg. WER 20-0 dB Baseline WER ratio

 

HTK-mfcc 13.7% 100%

Neural net-mfcc 9.3% 84.5%

Tandem-mfcc 7.4% 64.5%

 

Tandem-msg+plp 6.4% 47.2%
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Inside Tandem systems:
What’s going on?

 

• Visualizations of the net outputs

• Neural net normalizes away noise?

 

- ... just a successful way to build a classifier?
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Tandem vs. other approaches

 

• 50% of word errors corrected over baseline

• Beat a ‘bells and whistles’ system
that used many large-vocabulary techniques
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Using Models in Parallel:
HMM decomposition

(e.g. Varga & Moore 1991, Gales & Young 1996)

• Independent state sequences 
for 2+ component source models

• New combined state space q' = {q1 q2}

- need pdfs for each combination 

4

model 1

model 2 

observations / time
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“One microphone source separation”
(Roweis 2000, Manuel Reyes)

• State sequences → t-f estimates →  mask

- 1000 states/model (→ 106 transition probs.)
- simplify by modeling subbands (coupled HMM)?
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Speech Fragment Recognition
(Jon Barker & Martin Cooke, Sheffield)

• Signal separation is too hard!
Instead:
- segregate features into partially-observed 

sources
- then classify

• Made possible by missing data recognition
- integrate over uncertainty in observations 

for optimal posterior distribution

• Goal:
Relate clean speech models P(X|M)
to speech-plus-noise mixture observations
- .. and make it tractable
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Comparing different segregations

• Standard classification chooses between 
models M to match source features X

• Mixtures → observed features Y, segregation S, 
all related by 

- spectral features allow clean relationship

• Joint classification of model and segregation:

- integral collapses in several cases...

M∗ P M X( )
M

argmax P X M( )
P M( )
P X( )
--------------⋅

M
argmax = =

P X Y S,( )

freq

Observation
Y(f )

Segregation S

Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Calculating fragment matches

• P(X|M) - the clean-signal feature model

• P(X|Y,S)/P(X) - is X ‘visible’ given segregation?

• Integration collapses some bands...

• P(S|Y) - segregation inferred from observation
- just assume uniform, find S for most likely M 
- or: use extra information in Y to distinguish S’s

e.g. harmonicity, onset grouping

• Result: 
- probabilistically-correct relation between 

clean-source models P(X|M)
and inferred, recognized source + segregation 
P(M,S|Y)

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Speech fragment decoder results

• Simple P(S|Y) model forces contiguous regions 
to stay together
- big efficiency gain when searching S space

• Clean-models-based recognition 
rivals trained-in-noise recognition
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use e.g. CASA features to propose masks
- locally coherent regions
- more powerful than Roweis masks

• Huge practical advantage over full search

Y(t)

S1(t)
q1(t)

S2(t)
q2(t)



Dan Ellis Scene Analysis for Speech & Audio Recognition 2003-04-16 - 28

Outline

Sound, Mixtures & Learning

Computational Auditory Scene Analysis

Recognizing Speech in Noise

Using Models in Parallel

The Listening Machine
- Everyday sound
- Alarms
- Music

1

2

3

4

5



Dan Ellis Scene Analysis for Speech & Audio Recognition 2003-04-16 - 29

The Listening Machine

• Smart PDA records everything

• Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots

• Meeting data, ambulatory audio

5
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Alarm sound detection
(Ellis 2001)

• Alarm sounds have particular structure
- people ‘know them when they hear them’
- clear even at low SNRs

• Why investigate alarm sounds?
- they’re supposed to be easy
- potential applications...

• Contrast two systems:
- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)
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Alarms: Results

• Both systems commit many insertions at 0dB 
SNR, but in different circumstances:
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Music Applications

• Music as a complex, information-rich sound

• Applications of separation & recognition:
- note/chord detection & classification

- singing detection (→ genre identification ...)
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Summary

• Sound
- .. contains much, valuable information at many 

levels
- intelligent systems need to use this information

• Mixtures
- .. are an unavoidable complication when using 

sound
- looking in the right time-frequency place to find 

points of dominance

• Learning
- need to acquire constraints from the 

environment
- recognition/classification as the real task
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