Scene Analysis for Speech and Audio Recognition

- **1** Sound, Mixtures & Learning
- Computational Auditory Scene Analysis
- 3 Recognizing Speech in Noise
- Using Models in Parallel
- 5 The Listening Machine

Dan Ellis <dpwe@ee.columbia.edu>

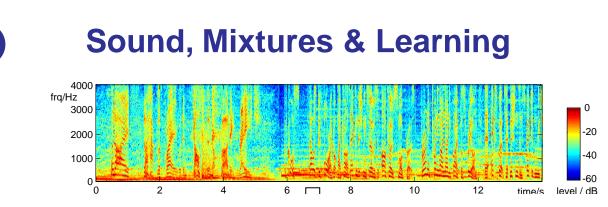
Laboratory for Recognition and Organization of Speech and Audio (Lab**ROSA**) Columbia University, New York

http://labrosa.ee.columbia.edu/

Dan Ellis

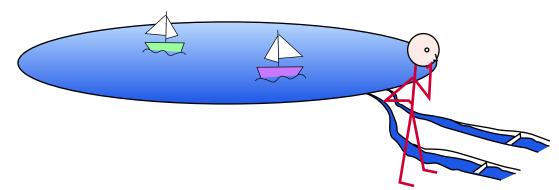
Scene Analysis for Speech & Audio Recognition

2003-04-16 - 1



- Sound
 - carries useful information about the world
 - complements vision
- Mixtures
 - .. are the rule, not the exception
 - medium is 'transparent' with many sources
 - must be handled!
- Learning
 - the speech recognition lesson: let the data do the work
 - ... like listeners do

The problem with recognizing mixtures

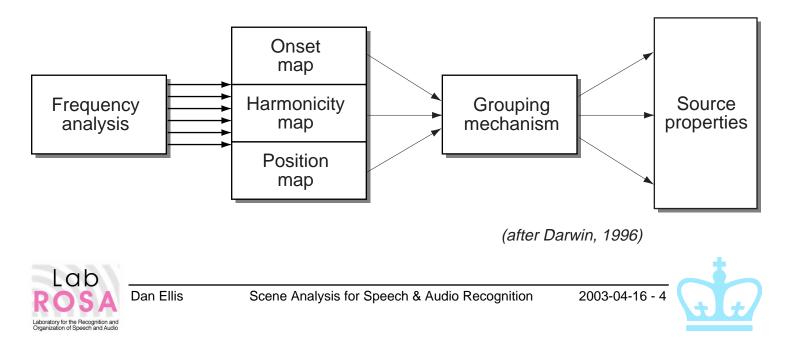


"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

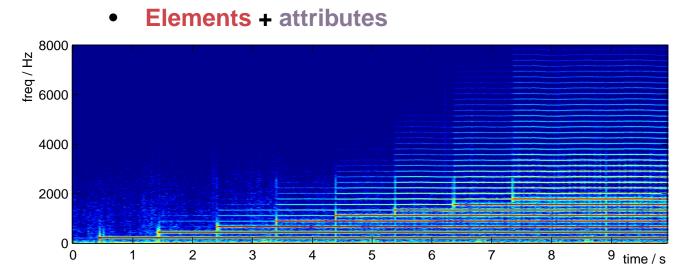
- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
 - ... like listeners do
- Hearing is ecologically grounded
 - reflects natural scene properties = constraints
 - subjective, not absolute

Auditory Scene Analysis (Bregman 1990)

- How do people analyze sound mixtures?
 - break mixture into small *elements* (in time-freq)
 - elements are *grouped* in to sources using *cues*
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...



Cues to simultaneous grouping

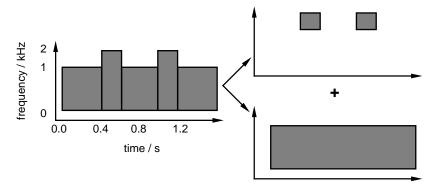


Common onset

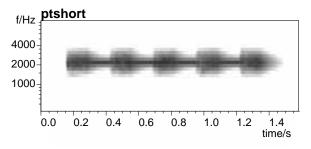
- simultaneous energy has common source
- Periodicity
 - energy in different bands with same cycle
- Other cues
 - spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation': i.e. a bias towards a particular interpretation
- Bregman's old-plus-new principle:



- a change is preferably interpreted as addition
- E.g. the continuity illusion



Approaches to sound mixture recognition

- Separate signals, then recognize
 - e.g. CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics..

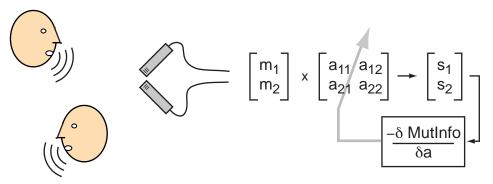
• Recognize with parallel models

- full joint-state space?
- divide signal into fragments, then use missing-data recognition

Independent Component Analysis (ICA)

(Bell & Sejnowski 1995 etc.)

• Drive a parameterized separation algorithm to maximize independence of outputs



- Advantages:
 - mathematically rigorous, minimal assumptions
 - does not rely on prior information from models

• Disadvantages:

- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

Dan Ellis

2003-04-16 - 8

Outline

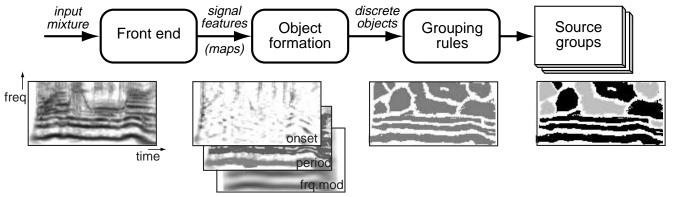
2 Computational Auditory Scene Analysis

- Data-driven
- Top-down constraints
- **Recognizing Speech in Noise** (3)
- **Using Models in Parallel** 4
- **The Listening Machine** (5)

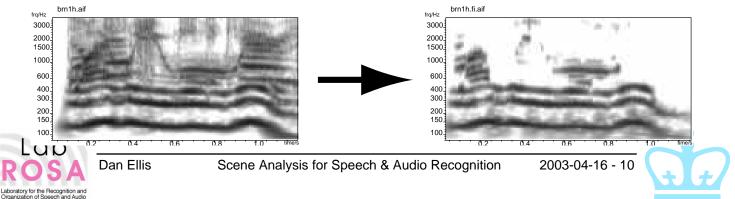
Computational Auditory Scene Analysis: The Representational Approach

(Cooke & Brown 1993)

• Direct implementation of psych. theory



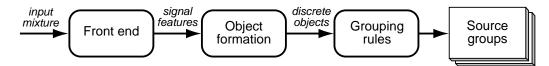
- 'bottom-up' processing
- uses common onset & periodicity cues
- Able to extract voiced speech:



Adding top-down constraints

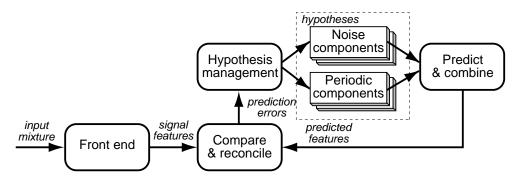
Perception is not direct but a search for plausible hypotheses

• Data-driven (bottom-up)...



- objects irresistibly appear

vs. Prediction-driven (top-down)

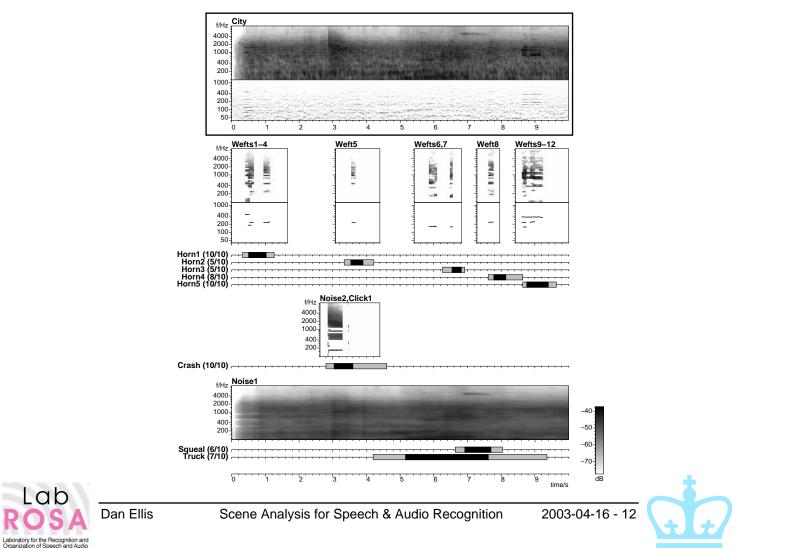


- match observations with parameters of a world-model
- need world-model constraints...

Prediction-Driven CASA

(Ellis 1996)

• Explain a complex sound with basic elements



Aside: Evaluation

- Evaluation is a big problem for CASA
 - what is the goal, really?
 - what is a good test domain?
 - how do you measure performance?

• SNR improvement

- tricky to derive from before/after signals: correspondence problem
- can do with fixed filtering mask; but rewards removing signal as well as noise

Speech Recognition (ASR) improvement

- recognizers typically very sensitive to artefacts
- 'Real' task?
 - mixture corpus with specific sound events...

Outline

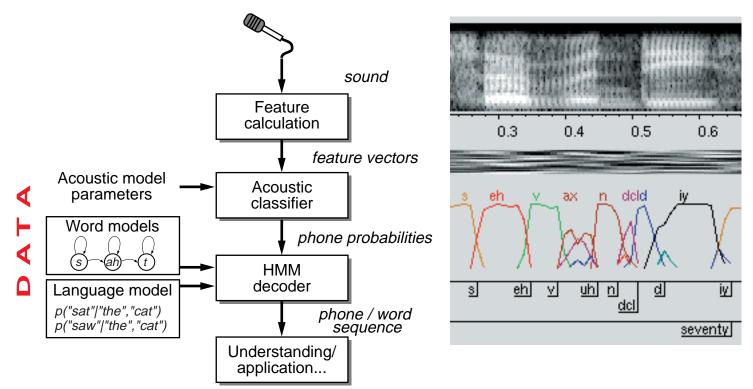
- 1 Sound, Mixtures & Learning
- **2** Computational Auditory Scene Analysis

3 Recognizing Speech in Noise

- Conventional ASR
- Tandem modeling
- **4** Using Models in Parallel
- **5** The Listening Machine

3 Recognizing Speech in Noise

• Standard speech recognition structure:

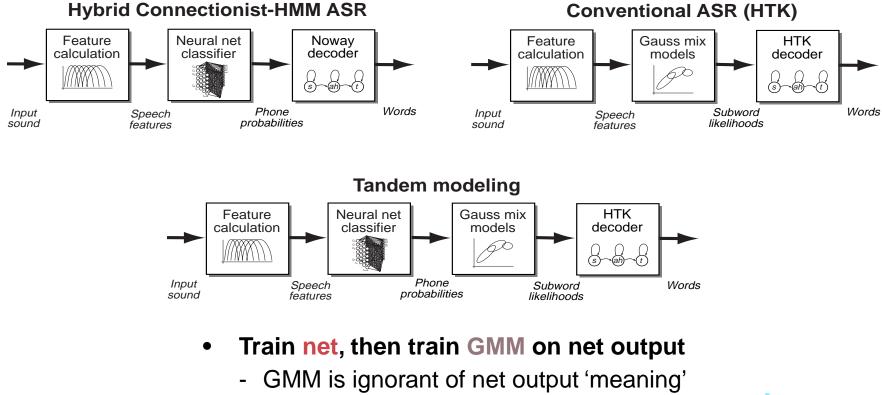


- How to handle additive noise?
 - just train on noisy data: 'multicondition training'

Tandem speech recognition

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

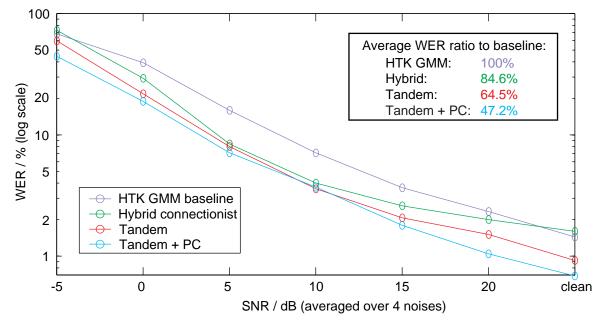
- Neural net estimates phone posteriors; but Gaussian mixtures model finer detail
- Combine them!



Tandem system results

• It works very well ('Aurora' noisy digits):

WER as a function of SNR for various Aurora99 systems



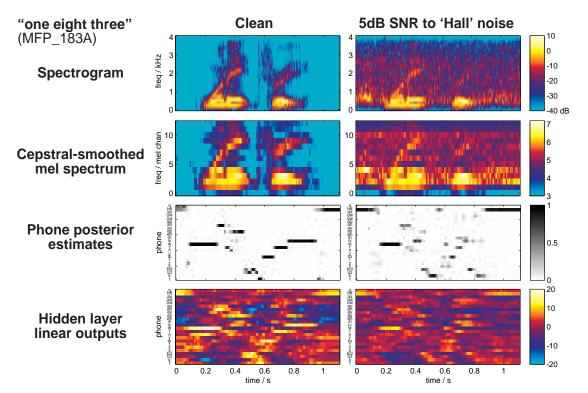
Avg. WER 20-0 dB	Baseline WER ratio	
13.7%	100%	
9.3%	84.5%	
7.4%	64.5%	
6.4%	47.2%	
	13.7% 9.3% 7.4%	

Dan Ellis

Scene Analysis for Speech & Audio Recognition 2003-04-16 - 17

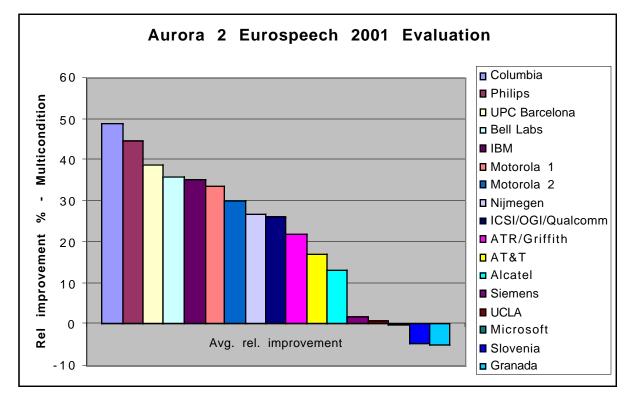
Inside Tandem systems: What's going on?

• Visualizations of the net outputs



- Neural net normalizes away noise?
 - ... just a successful way to build a classifier?

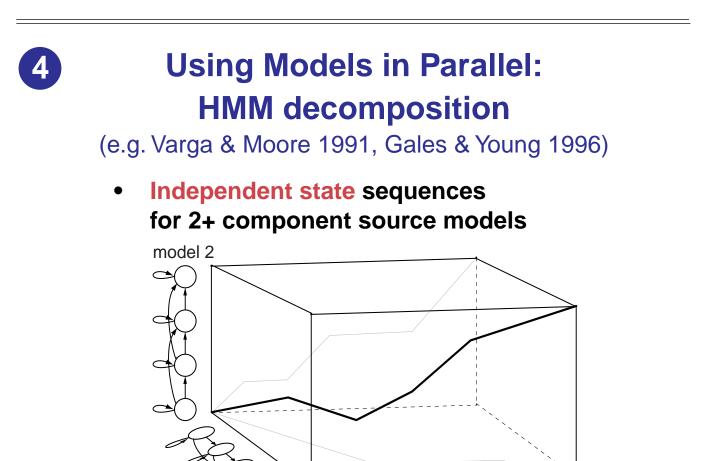
Tandem vs. other approaches



- 50% of word errors corrected over baseline
- Beat a 'bells and whistles' system that used many large-vocabulary techniques

Outline

- 1 Sound, Mixtures & Learning
- **2** Computational Auditory Scene Analysis
- **3** Recognizing Speech in Noise
- **4** Using Models in Parallel
 - HMM decomposition/factoring
 - Speech fragment decoding
- **5** The Listening Machine



• New combined state space $q' = \{q_1 q_2\}$

model 1

- need pdfs for each combination $p(X|q_1, q_2)$

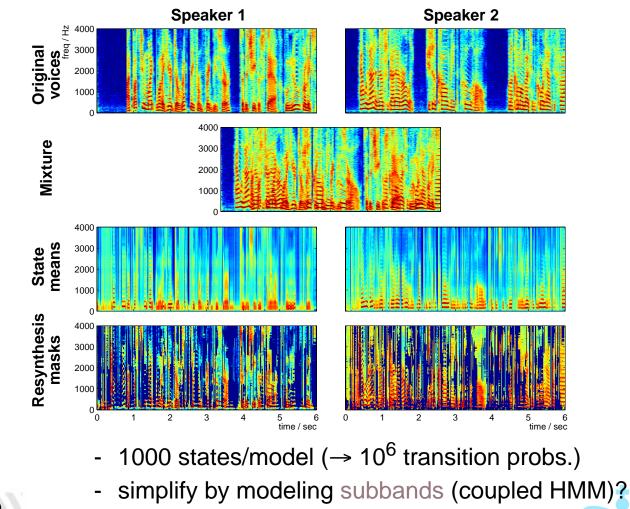
observations / time

2003-04-16 - 21

"One microphone source separation"

(Roweis 2000, Manuel Reyes)

• State sequences → t-f estimates → mask



Dan Ellis

Scene Analysis for Speech & Audio Recognition

2003-04-16 - 22

Speech Fragment Recognition

(Jon Barker & Martin Cooke, Sheffield)

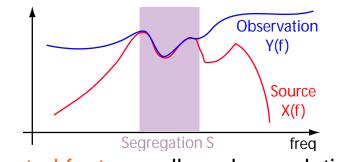
- Signal separation is too hard! Instead:
 - segregate features into partially-observed sources
 - then classify
- Made possible by missing data recognition
 - integrate over uncertainty in observations for optimal posterior distribution
- Goal:
 - Relate clean speech models *P*(*X*|*M*) to speech-plus-noise mixture observations
 - .. and make it tractable

Comparing different segregations

• Standard classification chooses between models *M* to match source features *X*

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

 Mixtures → observed features Y, segregation S, all related by P(X|Y, S)



- spectral features allow clean relationship
- Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- integral collapses in several cases...

 \mathbf{D}

Calculating fragment matches

 $P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot \frac{P(S|Y)}{P(X)}$

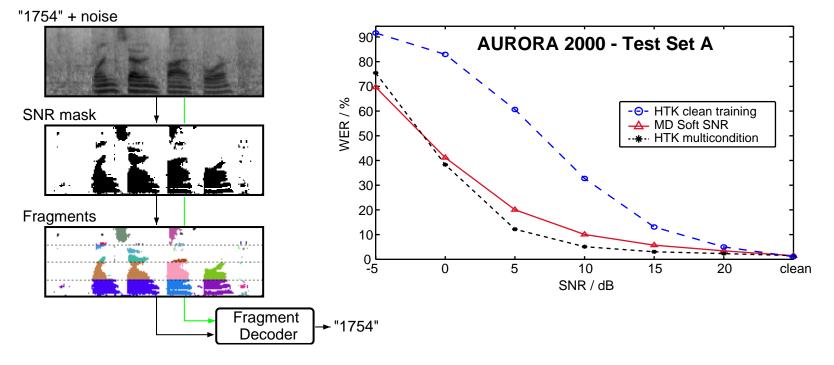
- *P*(*X*|*M*) the clean-signal feature model
- P(X|Y,S)/P(X) is X 'visible' given segregation?
- Integration collapses some bands...
- P(S|Y) segregation inferred from observation
 - just assume uniform, find S for most likely M
 - or: use extra information in *Y* to distinguish *S*'s e.g. harmonicity, onset grouping

• Result:

 probabilistically-correct relation between clean-source models *P*(*X*|*M*) and inferred, recognized source + segregation *P*(*M*,*S*|*Y*)

Speech fragment decoder results

- Simple *P*(*S*|*Y*) model forces contiguous regions to stay together
 - big efficiency gain when searching *S* space



• Clean-models-based recognition rivals trained-in-noise recognition

$\begin{array}{c} \text{Multi-source decoding} \\ \text{o} \quad \text{o$

- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
 - more powerful than Roweis masks
- Huge practical advantage over full search

Outline

- **1** Sound, Mixtures & Learning
- **2** Computational Auditory Scene Analysis
- **3** Recognizing Speech in Noise
- 4 Using Models in Parallel

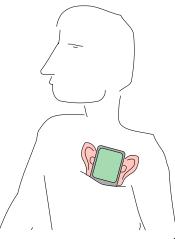
5 The Listening Machine

- Everyday sound
- Alarms
- Music

5

The Listening Machine

- Smart PDA records everything
- Only useful if we have index, summaries
 - monitor for particular sounds
 - real-time description
- Scenarios



- personal listener \rightarrow summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

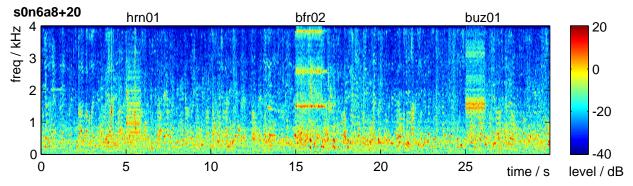
Dan Ellis

Scene Analysis for Speech & Audio Recognition

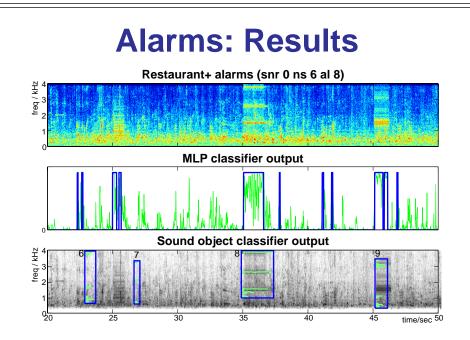
Alarm sound detection (Ellis 2001)

• Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



- Why investigate alarm sounds?
 - they're supposed to be easy
 - potential applications...
- Contrast two systems:
 - standard, global features, P(X|M)
 - sinusoidal model, fragments, P(M,S|Y)

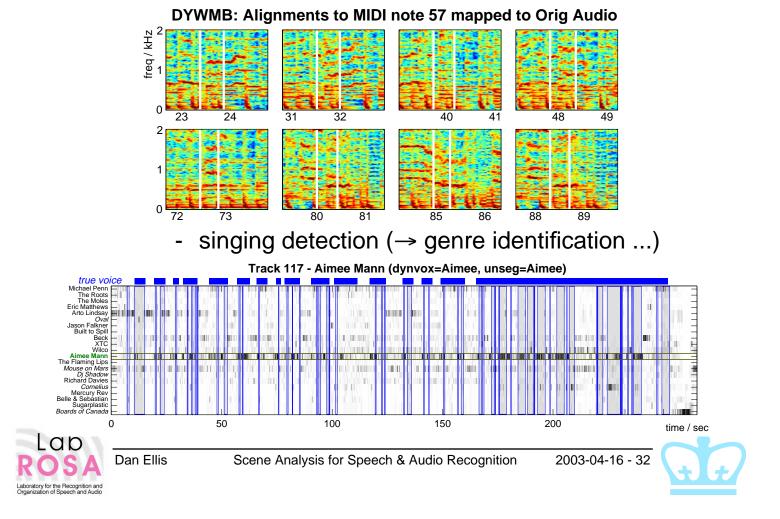


• Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system		Sinusoid model system			
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

Music Applications

- Music as a complex, information-rich sound
- Applications of separation & recognition:
 - note/chord detection & classification



Summary

• Sound

- .. contains much, valuable information at many levels
- intelligent systems need to use this information
- Mixtures
 - .. are an unavoidable complication when using sound
 - looking in the right time-frequency place to find points of dominance
- Learning
 - need to acquire constraints from the environment
 - recognition/classification as the real task

References

- A. Bregman. Auditory Scene Analysis, MIT Press, 1990.
- A. Bell and T. Sejnowski. "An information-maximization approach to blind separation and blind deconvolution," *Neural Computation*, 7: 1129-1159, 1995.

http://citeseer.nj.nec.com/bell95informationmaximization.html

A. Berenzweig, D. Ellis, S. Lawrence (2002). "Using Voice Segments to Improve Artist Classification of Music ", Proc. AES-22 Intl. Conf. on Virt., Synth., and Ent. Audio. Espoo, Finland, June 2002.

http://www.ee.columbia.edu/~dpwe/pubs/aes02-aclass.pdf

- A. Berenzweig, D. Ellis, S. Lawrence (2002). "Anchor Space for Classification and Similarity Measurement of Music", Proc. ICME-03, Baltimore, July 2003. http://www.ee.columbia.edu/~dpwe/pubs/icme03-anchor.pdf
- M. Cooke and G. Brown. "Computational auditory scene analysis: Exploiting principles of perceived continuity", *Speech Communication* 13, 391-399, 1993
- D. Ellis. *Prediction-driven computational auditory scene analysis*, Ph.D. dissertation, MIT, 1996. http://www.ee.columbia.edu/~dpwe/pubs/pdcasa.pdf
- D. Ellis. "Detecting Alarm Sounds", Proc. Workshop on Consistent & Reliable Acoustic Cues CRAC-01, Denmark, Sept. 2001.

http://www.ee.columbia.edu/~dpwe/pubs/crac01-alarms.pdf

M. Gales and S. Young. "Robust continuous speech recognition using parallel model combination", *IEEE Tr. Speech and Audio Proc.*, 4(5):352--359, Sept. 1996.

http://citeseer.nj.nec.com/gales96robust.html

H. Hermansky, D. Ellis and S. Sharma, "Tandem connectionist feature extraction for conventional HMM systems," *Proc. ICASSP*, Istanbul, June 2000.

http://citeseer.nj.nec.com/hermansky00tandem.html

