16,760 research outputs found

    The geometry of efficient arithmetic on elliptic curves

    Full text link
    The arithmetic of elliptic curves, namely polynomial addition and scalar multiplication, can be described in terms of global sections of line bundles on E×EE\times E and EE, respectively, with respect to a given projective embedding of EE in Pr\mathbb{P}^r. By means of a study of the finite dimensional vector spaces of global sections, we reduce the problem of constructing and finding efficiently computable polynomial maps defining the addition morphism or isogenies to linear algebra. We demonstrate the effectiveness of the method by improving the best known complexity for doubling and tripling, by considering families of elliptic curves admiting a 22-torsion or 33-torsion point

    Simple verification of completeness of two addition formulas on twisted Edwards curves

    Get PDF
    Daniel Bernstein and Tanja Lange  proved thattwo given addition formulas on twisted Edwards elliptic curvesax^2 + y^2 = 1 + dxy are complete (i.e. the sum of any two pointson a curve can be computed using one of these formulas). Inthis paper we give other simple verification of completenessof these formulas using for example Groebner bases and an ¨algorithm implemented in Magma, which is based on the fact thatcompleteness means that some systems of polynomial equationshave no solutions. This method may be also applied to verifycompleteness  of additions formulas on other models of ellipticcurves

    Simple verification of completeness of two addition formulas on twisted Edwards curves

    Get PDF
    Daniel Bernstein and Tanja Lange  proved thattwo given addition formulas on twisted Edwards elliptic curvesax^2 + y^2 = 1 + dxy are complete (i.e. the sum of any two pointson a curve can be computed using one of these formulas). Inthis paper we give other simple verification of completenessof these formulas using for example Groebner bases and an ¨algorithm implemented in Magma, which is based on the fact thatcompleteness means that some systems of polynomial equationshave no solutions. This method may be also applied to verifycompleteness  of additions formulas on other models of ellipticcurves

    Efficient arithmetic on elliptic curves in characteristic 2

    No full text
    International audienceWe present normal forms for elliptic curves over a field of characteristic 2 analogous to Edwards normal form, and determine bases of addition laws, which provide strikingly simple expressions for the group law. We deduce efficient algorithms for point addition and scalar multiplication on these forms. The resulting algorithms apply to any elliptic curve over a field of characteristic 2 with a 4-torsion point, via an isomorphism with one of the normal forms. We deduce algorithms for duplication in time 2M+5S+2mc2M + 5S + 2m_c and for addition of points in time 7M+2S7M + 2S, where MM is the cost of multiplication, SS the cost of squaring , and mcm_c the cost of multiplication by a constant. By a study of the Kummer curves K=E/{±1]}\mathcal{K} = E/\{\pm1]\}, we develop an algorithm for scalar multiplication with point recovery which computes the multiple of a point P with 4M+4S+2mc+mt4M + 4S + 2m_c + m_t per bit where mtm_t is multiplication by a constant that depends on PP

    Scaling Theory for Steady State Plastic Flows in Amorphous Solids

    Full text link
    Strongly correlated amorphous solids are a class of glass-formers whose inter-particle potential admits an approximate inverse power-law form in a relevant range of inter-particle distances. We study the steady-state plastic flow of such systems, firstly in the athermal, quasi-static limit, and secondly at finite temperatures and strain rates. In all cases we demonstrate the usefulness of scaling concepts to reduce the data to universal scaling functions where the scaling exponents are determined a-priori from the inter-particle potential. In particular we show that the steady plastic flow at finite temperatures with efficient heat extraction is uniquely characterized by two scaled variables; equivalently, the steady state displays an equation of state that relates one scaled variable to the other two. We discuss the range of applicability of the scaling theory, and the connection to density scaling in supercooled liquid dynamics. We explain that the description of transient states calls for additional state variables whose identity is still far from obvious.Comment: 9 pages, 9 figure

    Stress Propagation and Arching in Static Sandpiles

    Full text link
    We present a new approach to the modelling of stress propagation in static granular media, focussing on the conical sandpile constructed from a point source. We view the medium as consisting of cohesionless hard particles held up by static frictional forces; these are subject to microscopic indeterminacy which corresponds macroscopically to the fact that the equations of stress continuity are incomplete -- no strain variable can be defined. We propose that in general the continuity equations should be closed by means of a constitutive relation (or relations) between different components of the (mesoscopically averaged) stress tensor. The primary constitutive relation relates radial and vertical shear and normal stresses (in two dimensions, this is all one needs). We argue that the constitutive relation(s) should be local, and should encode the construction history of the pile: this history determines the organization of the grains at a mesoscopic scale, and thereby the local relationship between stresses. To the accuracy of published experiments, the pattern of stresses beneath a pile shows a scaling between piles of different heights (RSF scaling) which severely limits the form the constitutive relation can take ...Comment: 38 pages, 24 Postscript figures, LATEX, minor misspellings corrected, Journal de Physique I, Ref. Nr. 6.1125, accepte
    corecore