390 research outputs found

    DIGITAL HEARING AID SIGNAL PROCESSING SYSTEM USING ANDROID PHONE

    Get PDF
    Objective: The objective of this research is to propose an Android-based digital hearing aid signal processing algorithm with following key features:(1) Regenerated audio match the patient-specific pattern of hearing loss, (2) noise reduction, and (3) provide flexibility to the users.Methods: The proposed signal processing algorithm is designed based on the specific hearing loss of the hearing disorder patient using inverse Fouriertransform; besides, noise reduction feature is included in the digital algorithm design as well. Proposed digital algorithm has been implemented intoan Android-based smartphone and its performance has been tested under real-time condition.Results: Simulation results show that the frequency response of the proposed digital hearing aid signal processing algorithm is in agreement withthe initial theoretical design that was carried out based on the hearing impaired patient’s audiogram. The proposed algorithm has been implementedin the Android-based smartphone and tested in real time. Results show that most of the patients are satisfied with the regenerated audio quality.According to patient’s comments, the regenerated audio is clear and the users are allowed to control the volume level. Besides, no obvious hearinglatency can be detected.Conclusion: Audio signals generated by the proposed digital signal processing algorithm show similar audio signal frequency response in boththeoretical design and MATLAB simulation results. The only difference between the design and simulation results is the amplification levels. Theproposed algorithm provides flexibility to the users by allowing them to choose the desired amplification level. In real-time testing, the proposedAndroid-based digital hearing aid is able to reduce noise level from the surrounding and the output processed speech match the patient-specifichearing loss

    Methods of Optimizing Speech Enhancement for Hearing Applications

    Get PDF
    Speech intelligibility in hearing applications suffers from background noise. One of the most effective solutions is to develop speech enhancement algorithms based on the biological traits of the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The time constant is one of the key attributes of the MOC reflex as it regulates the variation of suppression over time. Different time constants have been measured in nonhuman mammalian and human auditory systems. Physiological studies reported that the time constant of nonhuman mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the stimulation. A human based study suggests that time constant could vary when the bandwidth of the noise is changed. Previous works have developed MOC reflex models and successfully demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, they often used fixed time constants. The effect of the different time constants on speech perception remains unclear. The main objectives of the present study are (1) to study the effect of the MOC reflex time constant on speech perception in different noise conditions; (2) to develop a speech enhancement algorithm with dynamic time constant optimization to adapt to varying noise conditions for improving speech intelligibility. The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-noise perception. Conventional studies do not consider the relationship between the time constants and speech perception as it is difficult to measure the speech intelligibility changes due to varying time constants in human subjects. We use a model to investigate the relationship by incorporating Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the time constant parameter of the model and testing the speech recognition accuracy of the ASR. Different time constants derived from human data are evaluated in both speech-like and non-speech like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show that the long time constants (≥1000 ms) provide a greater improvement of speech recognition accuracy at SNR levels≤10 dB. Maximum accuracy improvement of 40% (compared to no MOC condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show recognition accuracy over 5% higher than the longer ones at SNR levels ≥15 dB. The second part of the thesis develops a novel speech enhancement algorithm based on the MOC reflex with a time constant that is dynamically optimized, according to a lookup table for varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. High computational complexity would increase processing delay that causes intelligibility degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as entropy based features have been shown to be more robust in the cases of low SNR and nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels (< 0 dB), with averaging processing time only about 30% of the noise power estimation based method. The proposed SNR estimation method is further improved by implementing a nonlinear filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically optimized against varying SNRs is developed. The model incudes simulated inner hair cell response to reduce the model complexity, and now includes the SNR estimation method. Previous MOC reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst our modified MOC reflex model has a time constant dynamically optimized according to the estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement algorithm is developed based on the modified MOC reflex model and implemented in an existing hearing aid system. The performance is evaluated by measuring the objective speech intelligibility metric of processed noisy speech. In different types of noise, the proposed algorithm increases intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based algorithm in the hearing aid

    A Pilot Study on Cortical Auditory Evoked Potentials in Children: Aided CAEPs Reflect Improved High-Frequency Audibility with Frequency Compression Hearing Aid Technology

    Get PDF
    Background. This study investigated whether cortical auditory evoked potentials (CAEPs) could reliably be recorded and interpreted using clinical testing equipment, to assess the effects of hearing aid technology on the CAEP. Methods. Fifteen normal hearing (NH) and five hearing impaired (HI) children were included in the study. NH children were tested unaided; HI children were tested while wearing hearing aids. CAEPs were evoked with tone bursts presented at a suprathreshold level. Presence/absence of CAEPs was established based on agreement between two independent raters. Results. Present waveforms were interpreted for most NH listeners and all HI listeners, when stimuli were measured to be at an audible level. The younger NH children were found to have significantly different waveform morphology, compared to the older children, with grand averaged waveforms differing in the later part of the time window (the N2 response). Results suggest that in some children, frequency compression hearing aid processing improved audibility of specific frequencies, leading to increased rates of detectable cortical responses in HI children. Conclusions. These findings provide support for the use of CAEPs in measuring hearing aid benefit. Further research is needed to validate aided results across a larger group of HI participants and with speech-based stimuli

    Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing

    Get PDF
    • …
    corecore