946 research outputs found

    Biologically Inspired Robots

    Get PDF

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    Hexapod locomotion : a nonlinear dynamical systems approach

    Get PDF
    The ability of walking in a wide variety of terrains is one of the most important features of hexapod insects. In this paper we describe a bio-inspired controller able to generate locomotion and switch between different type of gaits for an hexapod robot. Motor patterns are generated by coupled Central Pattern Generators formulated as nonlinear oscillators. These patterns are modulated by a drive signal, proportionally changing the oscillators frequency, amplitude and the coupling parameters among the oscillators. Locomotion initiation, stopping and smooth gait switching is achieved by changing the drive signal. We also demonstrate a posture controller for hexapod robots using the dynamical systems approach. Results from simulation using a model of the Chiara hexapod robot demonstrate the capability of the controller both to locomotion generation and smooth gait transition. The postural controller is also tested in different situations in which the hexapod robot is expected to maintain balance. The presented results prove its reliability
    • …
    corecore