49,768 research outputs found

    Improving Function Coverage with Munch: A Hybrid Fuzzing and Directed Symbolic Execution Approach

    Full text link
    Fuzzing and symbolic execution are popular techniques for finding vulnerabilities and generating test-cases for programs. Fuzzing, a blackbox method that mutates seed input values, is generally incapable of generating diverse inputs that exercise all paths in the program. Due to the path-explosion problem and dependence on SMT solvers, symbolic execution may also not achieve high path coverage. A hybrid technique involving fuzzing and symbolic execution may achieve better function coverage than fuzzing or symbolic execution alone. In this paper, we present Munch, an open source framework implementing two hybrid techniques based on fuzzing and symbolic execution. We empirically show using nine large open-source programs that overall, Munch achieves higher (in-depth) function coverage than symbolic execution or fuzzing alone. Using metrics based on total analyses time and number of queries issued to the SMT solver, we also show that Munch is more efficient at achieving better function coverage.Comment: To appear at 33rd ACM/SIGAPP Symposium On Applied Computing (SAC). To be held from 9th to 13th April, 201

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table
    • …
    corecore