7 research outputs found

    Familiarity Discrimination of Radar Pulses

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). The performance of ARTMAP-FD is tested on radar pulse data obtained in the field, and compared to that of the nearest-neighbor-based NEN algorithm and to a k > 1 extension of NEN

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Rapport annuel 1998-1999

    Get PDF

    Rapport annuel 1997-1998

    Get PDF

    A Comparison of Self-Organizing Neural Networks for Fast Clustering of Radar Pulses

    No full text
    Four self-organizing neural networks are compared for automatic deinterleaving of radar pulse streams in electronic warfare systems. The neural networks are the Fuzzy Adaptive Resonance Theory, Fuzzy Min-Max Clustering, Integrated Adaptive Fuzzy Clustering, and Self-Organizing Feature Mapping. Given the need for a clustering procedure that offers both accurate results and computational efficiency, these four networks are examined from three perspectives --- clustering quality, convergence time, and computational complexity. The clustering quality and convergence time are measured via computer simulation, using a set of radar pulses collected in the field. The effect of the pattern presentation order is analyzed by presenting the data not just in random order, but also in radar-like orders called burst and interleaved. Estimation of the worst-case running time for each network allows for the assessment of computational complexity. 1 Introduction The purpose of radar electronic support ..

    Neuroengineering of Clustering Algorithms

    Get PDF
    Cluster analysis can be broadly divided into multivariate data visualization, clustering algorithms, and cluster validation. This dissertation contributes neural network-based techniques to perform all three unsupervised learning tasks. Particularly, the first paper provides a comprehensive review on adaptive resonance theory (ART) models for engineering applications and provides context for the four subsequent papers. These papers are devoted to enhancements of ART-based clustering algorithms from (a) a practical perspective by exploiting the visual assessment of cluster tendency (VAT) sorting algorithm as a preprocessor for ART offline training, thus mitigating ordering effects; and (b) an engineering perspective by designing a family of multi-criteria ART models: dual vigilance fuzzy ART and distributed dual vigilance fuzzy ART (both of which are capable of detecting complex cluster structures), merge ART (aggregates partitions and lessens ordering effects in online learning), and cluster validity index vigilance in fuzzy ART (features a robust vigilance parameter selection and alleviates ordering effects in offline learning). The sixth paper consists of enhancements to data visualization using self-organizing maps (SOMs) by depicting in the reduced dimension and topology-preserving SOM grid information-theoretic similarity measures between neighboring neurons. This visualization\u27s parameters are estimated using samples selected via a single-linkage procedure, thereby generating heatmaps that portray more homogeneous within-cluster similarities and crisper between-cluster boundaries. The seventh paper presents incremental cluster validity indices (iCVIs) realized by (a) incorporating existing formulations of online computations for clusters\u27 descriptors, or (b) modifying an existing ART-based model and incrementally updating local density counts between prototypes. Moreover, this last paper provides the first comprehensive comparison of iCVIs in the computational intelligence literature --Abstract, page iv
    corecore