10,084 research outputs found

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Towards panel data specifications of efficiency measures for English acute hospitals

    Get PDF
    This paper reports work undertaken for the Department of Health to explore different approaches of measuring hospital efficiency. The emphasis throughout is on developing adjusted cost-efficiency measures in line with NHS Trusts performance objectives. Previous work described the derivation of three residual-based cost indices (CCI, 2CCI and 3CCI), each with increasing adjustment in terms of case mix, factor prices and environmental factors for a single year’s data (1995/6) (Söderlund & van der Merwe, 1999). This study explores further options based on the previous work by: (1) supplementing hospital level with specialty level data; (2) studying a 4-year panel from 1994/5 to 1997/8; (3) estimating models with non-symmetric error terms and including Trust-specific effects when measuring inefficiency. Although the paper argues that panel data models may have certain advantages over cross-sectional ones, the results suggest that data pooling across years provide robust parameter estimates. Longitudinal fixed effect models may however be useful to construct efficiency indices while stochastic frontier models have the advantage of taking account of random noise. Specialty level models proved inferior to whole hospital estimations. The paper argues that the degree of variation between hospitals in terms of efficiency is not that great and scope for efficiency enhancement is primarily attainable by optimising capacity and activity levels in the long run. Increased activity levels may however have adverse consequences such as increased hospital infection rates, poorer quality of care and a lack of capacity to deal with emergency demand. The paper argues that the Department of Health might consider a shift from the adjusted cost index approach used in this normative benchmarking framework to the more conventional efficiency analysis approach using a total cost function, and more flexible functional forms, allowing for a more defensible interpretation of the residuals as inefficiency.efficiency

    Acuity-based Performance Evaluation and Tactical Capacity Planning in Primary Care

    Get PDF
    Effective primary care requires timely and equitable access to care for patients as well as efficient and balanced utilization of physician time. Motivated by a family health clinic in Ontario, Canada, this research proposes ways to improve both of these aspects of primary care through tactical capacity planning based on acuity-based performance targets. First, we propose a new metric based on acuity levels to evaluate timely access to primary care. In Canada, as well as other participant countries in the Organization for Economic Co-operation and Development (OECD), the main metric currently used to evaluate access is the proportion of patients who are able to obtain a same- or next-day appointment. However, not all patients in primary care are urgent and require a same- or next-day appointment. Therefore, accurate evaluation of timely access to primary care should consider the urgency of the patient request. To address this need, we define multiple acuity levels and relative access targets in primary care, akin to the CTAS system in emergency care. Furthermore, current access time evaluation in the province is mostly survey-based, while our evaluation is based on appointment data and hence more objective. Thus, we propose a novel, acuity-based, data-driven approach for evaluation of timely access to primary care. Second, we develop a deterministic tactical capacity planning (TCP) model to balance workload between weeks for each family physician in the specific primary care clinic in this study. Unbalanced workload among weeks may lead to provider overtime for the weeks with high workload and provider idle time for weeks with low workload. In the proposed TCP model, we incorporate the results from access time evaluation in the first study as constraints for access time. The proposed TCP model considers 11 appointment types with multiple access targets for each appointment type. The TCP model takes as input a forecast of demand coming from an ARIMA model. We compare the results of the TCP model based on current access time targets as well as targets resulting from our acuity-based metrics. The use of our proposed acuity-based targets leads to allocation of time slots which is more equitable for patients and also improves physician workload balance. Third, we also propose a robust TCP model based on the cardinality-constrained method to minimize the highest potential physician peak load between weeks. Therefore, the developed robust TCP model enables protection against uncertainty through providing a feasible allocation of capacity for all realizations of demand. The proposed robust TCP model considers two interdependent appointment types (e.g., new patients and follow ups), multiple access time targets for each appointment type and uncertainty in demand for appointments. We conduct a set of experiments to determine how to set the level of robustness based on extra cost and infeasibility probability of a robust solution. In summary, this dissertation advocates for the definition and subsequent use of acuity-based access time targets for both performance evaluation and capacity allocation in primary care. The resulting performance metrics provide a more detailed view of primary care and lead to not only more equitable access policies but also have the potential to improve physician workload balance when used as input to capacity planning models

    Climate change and health: a tool to estimate health and adaptation costs

    Get PDF
    Details the correct use of a WHO designed economic analysis tool to support health adaptation planning in European member states.Summary:The WHO Regional Office for Europe prepared this economic analysis tool to support health adaptation planning in European Member States. It is based on a review of the science. It is expected to be applied in Member States mainly by line ministries responsible for climate change adaptation. It provides step-by-step guidance on estimating (a) the costs associated with damage to health due to climate change, (b) the costs for adaptation in various sectors to protect health from climate change and (c) the efficiency of adaptation measures, i.e. the cost of adaptation versus the expected returns, or averted health costs. The tool consists of a document describing the methods step-by-step and a manual with an Excel spreadsheet, which is a visual aid for calculating costs

    Managing Patient Service in a Diagnostic Medical Facility

    Get PDF
    Hospital diagnostic facilities, such as magnetic resonance imaging centers, typically provide service to several diverse patient groups: outpatients, who are scheduled in advance; inpatients, whose demands are generated randomly during the day; and emergency patients, who must be served as soon as possible. Our analysis focuses on two interrelated tasks: designing the outpatient appointment schedule, and establishing dynamic priority rules for admitting patients into service. We formulate the problem of managing patient demand for diagnostic service as a finite-horizon dynamic program and identify properties of the optimal policies. Using empirical data from a major urban hospital, we conduct numerical studies to develop insights into the sensitivity of the optimal policies to the various cost and probability parameters and to evaluate the performance of several heuristic rules for appointment acceptance and patient scheduling

    Applying and integer Linear Programming Model to an appointment scheduling problem

    Get PDF
    Dissertação de Mestrado, Ciências Económicas e Empresariais (Economia e Políticas Públicas), 28 de fevereiro de 2022, Universidade dos Açores.A gestão de consultas ambulatórias pode ser um processo complexo, uma vez que envolve vários stakeholders com diferentes objetivos. Para os utentes poderá ser importante minimizar os tempos de espera. Simultaneamente, para os trabalhadores do setor da saúde, condições de trabalho justas devem ser garantidas. Assim, é cada vez mais necessário ter em conta o equilíbrio de cargas horárias e a otimização dos recursos disponíveis como principais preocupações no agendamento e planeamento de consultas. Nesta dissertação, uma abordagem com dois modelos para a criação de um sistema de agendamento de consultas é proposta. Esta abordagem é feita em programação linear, com dois modelos que têm como objetivo minimizar as diferenças de cargas horárias e melhorar o seu equilíbrio ao longo do planeamento. Os modelos foram estruturados e parametrizados de acordo com dados gerados aleatoriamente. Para isso, o desenvolvimento foi feito em Java, gerando assim os dados referidos. O Modelo I minimiza as diferenças de carga horária entre os quartos disponíveis. O Modelo II, por outro lado, propõe uma nova função objetivo que minimiza a diferença máxima observada, com um processo de decisão minxmax. Os modelos mostram resultados eficientes em tempos de execução razoáveis para instâncias com menos de aproximadamente 10 quartos disponíveis. Os tempos de execução mais altos são observados quando as instâncias ultrapassam este número de quartos disponíveis. Em relação ao equilíbrio da carga horária, observou-se que o número de especialidades disponíveis para atendimento e a procura por dia foram o que mais influenciou a minimização da diferença da carga horária. Os resultados do Modelo II mostram melhor tempo de execução e um maior número de soluções ótimas. Uma vez que as diferenças entre os dois modelos não são consideráveis, o Modelo I poderá representar um melhor conjunto de soluções para os decisores já que minimiza a diferença da carga horária total entre quartos em vez de apenas minimizar o valor máximo da diferença de carga horária entre quaisquer dois quartos.ABSTRACT: Outpatient appointment management can be a complex process since it involves many conflicting stakeholders. As for the patients it might be important to minimize waiting time. Simultaneously, for healthcare workers, fair working conditions must be guaranteed. Thus, it is increasingly necessary to have workload balance and resource optimization as the main concerns in the scheduling and planning of outpatient appointments. In this dissertation, a two-model approach for designing an appointment scheduling is proposed. This approach is formulated as two mathematical Integer Linear Programming models that integrate the objective of minimizing workload difference and improving workload balance. The models were structured and parameterized according to randomly generated data. For this, the work was developed in Java, generating said data. Model I minimizes the workload differences among rooms. Model II, on the other hand, proposes a new objective function that minimizes the maximum workload difference, with a minxmax decision process. The computational models behaves efficiently in reasonable run times for numerical examples with less than approximately 10 rooms available. Higher run times are observed when numerical examples surpass these number of available rooms. Regarding workload balance, it was observed that the number of specialties available for appointments and the demand for each day were the most influential in the minimization of workload difference. Model II results show a shorter model run time and more optimal solutions. As the differences between both Models are not considerable, Model I might propose a better set of solution for decision makers since it minimizes the total workload difference amongst rooms instead of only minimizing the maximum workload difference between any two rooms

    A Simulation-Based Evaluation Of Efficiency Strategies For A Primary Care Clinic With Unscheduled Visits

    Get PDF
    In the health care industry, there are strategies to remove inefficiencies from the health delivery process called efficiency strategies. This dissertation proposed a simulation model to evaluate the impact of the efficiency strategies on a primary care clinic with unscheduled walk-in patient visits. The simulation model captures the complex characteristics of the Orlando Veteran\u27s Affairs Medical Center (VAMC) primary care clinic. This clinic system includes different types of patients, patient paths, and multiple resources that serve them. Added to the problem complexity is the presence of patient no-shows characteristics and unscheduled patient arrivals, a problem which has been until recently, largely neglected. The main objectives of this research were to develop a model that captures the complexities of the Orlando VAMC, evaluate alternative scenarios to work in unscheduled patient visits, and examine the impact of patient flow, appointment scheduling, and capacity management decisions on the performance of the primary care clinic system. The main results show that only a joint policy of appointment scheduling rules and patient flow decisions has a significant impact on the wait time of scheduled patients. It is recommended that in the future the clinic addresses the problem of serving additional walk-in patients from an integrated scheduling and patient flow viewpoint

    Optimization of Healthcare Delivery System under Uncertainty: Schedule Elective Surgery in an Ambulatory Surgical Center and Schedule Appointment in an Outpatient Clinic

    Get PDF
    This work investigates two types of scheduling problems in the healthcare industry. One is the elective surgery scheduling problem in an ambulatory center, and the other is the appointment scheduling problem in an outpatient clinic. The ambulatory surgical center is usually equipped with an intake area, several operating rooms (ORs), and a recovery area. The set of surgeries to be scheduled are known in advance. Besides the surgery itself, the sequence-dependent setup time and the surgery recovery are also considered when making the scheduling decision. The scheduling decisions depend on the availability of the ORs, surgeons, and the recovery beds. The objective is to minimize the total cost by making decision in three aspects, number of ORs to open, surgery assignment to ORs, and surgery sequence in each OR. The problem is solved in two steps. In the first step, we propose a constraint programming model and a mixed integer programming model to solve a deterministic version of the problem. In the second step, we consider the variability of the surgery and recovery durations when making scheduling decisions and build a two stage stochastic programming model and solve it by an L-shaped algorithm. The stochastic nature of the outpatient clinic appointment scheduling system, caused by demands, patient arrivals, and service duration, makes it difficult to develop an optimal schedule policy. Once an appointment request is received, decision makers determine whether to accept the appointment and put it into a slot or reject it. Patients may cancel their scheduled appointment or simply not show up. The no-show and cancellation probability of the patients are modeled as the functions of the indirect waiting time of the patients. The performance measure is to maximize the expected net rewards, i.e., the revenue of seeing patients minus the cost of patients\u27 indirect and direct waiting as well as the physician\u27s overtime. We build a Markov Decision Process model and proposed a backward induction algorithm to obtain the optimal policy. The optimal policy is tested on random instances and compared with other heuristic policies. The backward induction algorithm and the heuristic methods are programmed in Matlab
    corecore