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Managing Patient Service in a Diagnostic Medical Facility

Abstract
Hospital diagnostic facilities, such as magnetic resonance imaging centers, typically provide service to several
diverse patient groups: outpatients, who are scheduled in advance; inpatients, whose demands are generated
randomly during the day; and emergency patients, who must be served as soon as possible. Our analysis
focuses on two interrelated tasks: designing the outpatient appointment schedule, and establishing dynamic
priority rules for admitting patients into service.

We formulate the problem of managing patient demand for diagnostic service as a finite-horizon dynamic
program and identify properties of the optimal policies. Using empirical data from a major urban hospital, we
conduct numerical studies to develop insights into the sensitivity of the optimal policies to the various cost
and probability parameters and to evaluate the performance of several heuristic rules for appointment
acceptance and patient scheduling.
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Abstract

Hospital diagnostic facilities, such as magnetic resonance imaging centers, typi-

cally provide service to several diverse patient groups: outpatients, who are sched-

uled in advance; inpatients, whose demands are generated randomly during the day;

and emergency patients, who must be served as soon as possible. Our analysis fo-

cuses on two inter-related tasks: designing the outpatient appointment schedule, and

establishing dynamic priority rules for admitting patients into service.

We formulate the problem of managing patient demand for diagnostic service

as a finite horizon dynamic program and identify properties of the optimal policies.

Using empirical data from a major urban hospital, we conduct numerical studies to

develop insights on the sensitivity of the optimal policies to the various cost and

probability parameters and to evaluate the performance of several heuristic rules for

appointment acceptance and patient scheduling.



1 Introduction

Medical diagnostic facilities, such as Magnetic Resonance Imaging (MRI) installations,

constitute a critical component of a comprehensive health care system. In an increasingly

competitive industry where both costs and customer expectations are rising rapidly, hos-

pital managers are under greater pressure to manage such facilities more efficiently and

effectively.

In many cases, hospital-based imaging facilities are accessed by a wide range of patients,

from both inside and outside of the hospital. These patients can be grouped into three

broad categories, each of which has distinct demand characteristics: outpatients, inpatients

and emergency patients. Outpatient appointments are typically scheduled days or weeks in

advance and sometimes result in cancellations and no-shows. On the other hand, inpatient

demands are usually generated the same day as needed, while emergency patients must be

served as soon as possible following the physician’s request. The financial characteristics of

these three classes are also generally quite different. The hospital typically receives a “fee-

for-service” for providing outpatient services, while inpatient care is typically reimbursed

based on a DRG (diagnostic-related group) code and is irrespective of what resources are

actually used. As a result, hospital managers often view imaging procedures for outpatients

as a source of additional revenue but as a cost for inpatients. Emergency patients may fall

into either category, largely depending on whether or not they are ultimately admitted as

inpatients.

Diagnostic imaging equipment is very expensive. For example, a new MRI costs ap-

proximately $2 million with a commensurate cost for building and preparing the space it

will occupy. In addition, the purchase of MRIs is typically regulated by the states through

a certificate of need (CON) process which is used, among other things, to restrict the sup-

ply of MRIs (and other expensive technologies) in order to control costs (much of which is

1



paid by the states through Medicaid and other insurance programs). Therefore, hospital

managers have every incentive to keep these machines fully utilized. This is often done by

filling most, if not all, examination slots during the day with outpatient appointments. In

particular, little or no slack is allocated for unanticipated inpatient demands or emergen-

cies. This scheduling approach sometimes results in postponing an inpatient exam one or

more days, potentially delaying the patients’s discharge from the hospital and, therefore,

increasing hospital costs, which are typically not reimbursed due to the DRG prospective

payment system. Outpatients, too, often experience significant delays.

The management of a diagnostic facility consists of two interrelated tasks: establishing

an appointment schedule for outpatients, and designing a system of dynamic priority rules

for admitting patients into service in real time. Appointment scheduling consists of deter-

mining the duration, number, and timing of examination slots for a particular day. This

task may be further complicated by outpatient cancellations and “no-shows”. Dynamic

priority rules provide real-time control of access to the facility by potentially competing

patient classes. In particular, before the beginning of each examination slot (service pe-

riod) there may be waiting patients from more than one class due to the random arrivals of

requests generated by inpatients and emergency patients. If there is an emergency service

request, it gets the highest priority. In the absence of an emergency patient, a decision

must be made as to whether a (scheduled) outpatient or a (non-scheduled) inpatient should

be served next, if both are waiting. Serving an inpatient will result in a delay for one or

more outpatients, which will adversely affect perceived service quality and could result in

lost business. Yet, selecting an outpatient may ultimately result in longer hospital stays

for some inpatients.

These capacity management tasks - appointment scheduling and real-time capacity

allocation - are interrelated. On the one hand, the selection of a specific appointment

schedule affects the likelihood and timing of both inpatient and outpatient delays which
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will affect the choice of the real-time allocation policy. On the other hand, the impact of

a particular schedule on the overall performance of the service facility likely depends on

the selected real-time allocation policy. Thus, both sets of decisions have to be analyzed

within a common decision framework, which we present and analyze in this paper.

Specifically, this paper makes the following contributions:

1. We model the operations of a medical diagnostic facility with several patient types as

a dynamic stochastic control problem and establish structural properties of an opti-

mal real-time capacity allocation policy under an arbitrary outpatient appointment

schedule. In particular, we show that under mild assumptions about the structure

of the cost and revenue functions, the expected profits are optimized by monotone

“switching curve” policies.

2. We establish additional structural properties of the optimal real-time capacity al-

location controls under a “threshold” outpatient appointment policy often used in

practice. We identify conditions for which a simple priority scheme is optimal, and

prove that in general, the switching curve is a function of only the service period

index and the number of waiting patients belonging to the “critical” class (which is

likely to be inpatients). Furthermore, we show that the critical number which gov-

erns the switching policy is monotonic in the service period index and is independent

of the appointment schedule.

3. We develop a linear heuristic as a simpler alternative to the optimal real-time service

policy, and, using a series of numerical studies based on the operational data from an

actual hospital MRI facility, show that it works well over a broad range of parameter

settings. This heuristic reduces to an even simpler heuristic for some parameter

values, and we identify situations in which this simpler heuristic performs well.
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4. Though we do not obtain an optimal policy for the more difficult problem of appoint-

ment scheduling, we numerically explore the performance of some simple heuristics,

and show that one of these, combined with an appropriate service heuristic, works

well in many circumstances.

The rest of the paper is organized as follows. We start with a review of the related

literature in the next section. In sections 3 and 4, we describe the model and establish the

structural properties of an optimal real-time capacity management policy for admitting

patients into service under an arbitrary appointment schedule. In section 5, we focus on

“threshold” appointment schemes, under which the first specified number of examination

slots of the day are scheduled with outpatients and the remaining slots are left open for

inpatients. We develop a linear approximation heuristic in section 6, and in section 7,

we use the data from the operations of a real MRI diagnostic facility as the basis of an

experimental design to numerically study the performance of this heuristic and others, and

to explore the performance of some commonly used policies for outpatient scheduling. We

conclude in section 8 with a discussion of our results and potential directions for future

research.

2 Review of Related Literature

Our analysis of the operations of a medical diagnostic facility shares some traits with a

number of stochastic control and scheduling applications.

The dynamic allocation of service capacity among several competing customer classes

has been studied in a variety of contexts. Those most similar to our problem include

hotel management (Liberman and Yechiali (1978), Bitran and Gilbert (1996)), car rentals

(Carrol and Grimes (1995) and Geraghty and Johnson (1997)), airline yield management

(Belobaba (1989)), telecommunications (Ross and Tsang (1989), Altman et al. (2001),
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Örmeci et al. (2001)), and call center management (see Gans et al. (2002) for a com-

prehensive review). In particular, the last two research streams often model the service

capacity allocation as a dynamic priority queueing control problem. In some of these

business environments (e.g. hotel management, car rentals, airline yield management,

telecommunications), the provision of service cannot be delayed, i.e., if the demand can’t

be served at the requested time, the customer is lost. In the diagnostic facility setting,

service of both inpatients and outpatients may be delayed with appropriate penalties. In

call center research, the analyzed service system is often modeled as a delay system, simi-

lar to our case. However, the analysis typically focuses on the properties of the stationary

state in the infinite horizon setting. On the contrary, in our model, we analyze transient

behavior of the diagnostic system in the finite horizon setting corresponding to a day of

service.

As in our case, the scheduling literature considers finite horizon models in which the

objective is to identify a service sequence which minimizes either expected or total cost (see

e.g. Pinedo (2001)). However, there are two important distinctions. First, in scheduling

models, it is assumed that all jobs will be processed by the end of the horizon, while in

our case, some patients may be lost or rescheduled to another day. Second, in scheduling

models it is assumed that a fixed number of jobs are “released” either in the beginning

of the horizon or at some, perhaps, random time during the horizon. In our setting, jobs

are released only at pre-specified time intervals, but the actual total number of service

requests over the horizon is a random variable.

There is a distinct literature dealing with medical appointment scheduling. Most of

these papers (e.g. Bailey (1952), Soriano (1964), Fries and Marathe (1980), and Ho and

Lau (1992)) address the scheduling of a single patient class and focus on the impact of

policies on both patient and physician waiting times. The problem of allocating medical

service capacity between distinct demand streams has received only limited coverage in
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the research literature. Gerchak, Gupta and Henig (1996) analyzed this problem in the

setting of an operating room where the capacity is shared between elective and emergency

surgeries. The focus of their work is on the reservation planning policy for elective patients.

Though closely related to the outpatient appointment scheduling problem we consider,

their model does not have unscheduled inpatient demand.

3 Model Description

On each working day, we consider N identical service slots (periods), some of which may

have been reserved through the appointment system. The assumption of identical length

service slots reflects common practice with typical lengths ranging from 30 minutes to an

hour. In our analysis, we assume that examination times are the same for all patients,

irrespective of their type, and equal to the length of the service slot. In practice, the average

service time may depend on the type of the exam performed and may vary from patient

to patient within the same exam type. (Some facilities allocate more than one service slot

for examinations that typically take longer than average, for example, abdomen scans.)

We express the schedule of accepted appointments as an N-dimensional binary vector a:

ai = 1 if the i-th appointment slot has been filled and ai = 0 otherwise, i = 1, ..., N.

We assume that non-scheduled inpatient and emergency demands occur randomly dur-

ing the day. In particular, the intensity of inpatient and emergency demands is considered

to be relatively low, so that it is unlikely that more than one request for each type of

service arrives during each service period. We denote by pe and pn the arrival probabilities

of emergency and inpatient service requests, respectively, during any service period. We

also assume that there is a positive probability of a “no-show” for each scheduled outpa-

tient appointment. We denote by ps the probability that a scheduled outpatient shows up

for the appointment. We assume that the arrival streams of the three patient groups are
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independent of each other.

Using these assumptions, we can model the dynamics of the diagnostic facility as a

discrete time Markov chain, whose trajectory is determined by the selection of the patient

type to be admitted into service in the beginning of each service period. The state of

the service system consists of the numbers of (non-scheduled) inpatients and (scheduled)

outpatients, (ni, si), waiting for service right after the beginning of i-th service period

(“after-the-action state”). For the i-th service slot, we consider the following finite state

space Si = ((n, s) |0 ≤ n ≤ i− 1, 0 ≤ s ≤ i− 1). This definition reflects our assumption

that there can be at most one arrival of each type of patient during any service period -

in particular, the number of patients of each type waiting during the (i+1)-st service slot

can be higher than those waiting during the i-th slot by at most 1. At the end of each

service period, i = 1, ..., N − 1, there are several possible actions available, depending on

whether or not an inpatient or emergency patient request has arrived during the period.

We assume that the diagnostic facility collects a revenue of rs and rn per examination

for each outpatient and inpatient, respectively. Delaying a service request incurs a waiting

cost per period of ws and wn for outpatients and inpatients, respectively. Finally, there is

a penalty function f(n, s) associated with patients not served by the end of the day. In

the simplest case, there are penalty costs πs and πn for each outpatient and inpatient not

served. Based on information obtained from several hospitals, the following assumptions

reflect typical relationships concerning these revenue and cost parameters: (1) the revenue

brought in by an outpatient dominates the revenue brought in by an inpatient (rs > rn);

(2) the waiting cost per service period for an outpatient is greater than that for an inpatient

(ws > wn) (since the inpatient is in the hospital anyway) and (3) in the linear penalty cost

case, the end-of-day penalty cost for an inpatient is greater than that for an outpatient

(πs < πn). This last relationship is based on several factors. First, the failure to examine

an inpatient by the end of the day typically results in an extra day of hospitalization
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for that patient, particularly since an MRI is often required to verify that the patient is

ready to be discharged. Second, each additional day translates to an additional net cost

for the hospital since payment for most insured patients is based on a prospective (DRG)

basis which is independent of the actual time or resources required for treatment. The

cost of an extra day is considered by most hospitals to be very high because of variable

staffing costs and the opportunity cost associated with not having the bed available for

other patients. This latter cost is most relevant for large hospitals that operate at high

average occupancy levels, such as the one we studied which has an average occupancy level

of over 90%. Finally, if one or more outpatients are still waiting to be examined at the

end of the normal workday, the scans will generally be performed using overtime. In some

of these cases, the patients leave the facility before being examined and either choose to

have their scan done elsewhere or reschedule for another day. In either case, the associated

net penalty cost is likely to be significantly lower than the cost of an additional inpatient

hospital day.

Using the cost and revenue structure and the system dynamics introduced above, we

can formulate the profit maximization problem for a diagnostic facility as a finite-horizon

dynamic program. For a given appointment schedule a, let V a
i (n, s) be the optimal total

expected profit over the (N−i)-period planning horizon, starting in the i-th service period

and ending in the N-th, when the state of the system right after the beginning of the i-th

service period is (n, s). Using well-known results on Markov dynamic programming, we

can formulate the optimality equation satisfied by the optimal cost function:

V a
i (n, s)

= −sws − nwn + pepn
£
(1− psai+1)V

a
i+1 (n+ 1, s) + psai+1V

a
i+1 (n+ 1, s+ 1)

¤
+pe (1− pn)

£
(1− psai+1)V

a
i+1 (n, s) + psai+1V

a
i+1 (n, s+ 1)

¤
+pn (1− pe)

£
(1− psai+1)H

a
i+1 (n+ 1, s) + psai+1H

a
i+1 (n+ 1, s+ 1)

¤
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+(1− pe)(1− pn)
£
(1− psai+1)H

a
i+1 (n, s) + psai+1H

a
i+1 (n, s+ 1)

¤
,

(n, s) ∈ Si, i = 1, ..., N, (1)

where the optimal actions are determined by maximization operators

Ha
i (n, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max[V a
i (n− 1, s) + rn, V

a
i (n, s− 1) + rs], if n ≥ 1, s ≥ 1,

V a
i (n− 1, 0) + rn, if n ≥ 1, s = 0,

V a
i (0, s− 1) + rs, if n = 0, s ≥ 1,

V a
i (0, 0) , if n = s = 0.

(2)

The boundary condition (at the end of each working day) for the recursion (2) is given by

Ha
N+1 (n, s) = V a

N+1 (n, s) = f (n, s) , (3)

where f (n, s) is assumed to be a known function defined on SN+1.

(1) states that when n inpatients and s outpatients are waiting for service during period

i, the waiting penalty cost −sws−nwn is incurred and the system can find itself in one of

eight possible states (depending on arrivals of new service requests) before the beginning

of period i + 1. For example, if during i-th service period there is an emergency as well

as a non-emergency inpatient arrival, but the outpatient scheduled for (i+ 1)-st slot does

not arrive (the probability of this is pepn (1− psai+1)), the system will start the (i+ 1)-st

period in state (n+ 1, s), since the (i+ 1)-st slot will be used for the emergency patient.

If, however, there is no emergency arrival during the i-th service period but both a new

inpatient as well as the outpatient scheduled for the (i+1)-st slot arrive (the probability of

this is (1−pe)pnpsai+1), the (i+1)-st period will start in either state (n+1, s) or (n, s+1),

depending on whether an outpatient or an inpatient is served during the (i+1)-st slot. At

the heart of the optimization (1) is the choice (2) between serving outpatient customers

who arrive via the appointment system and inpatient customers whose service requests

arrive “unexpectedly”. Clearly, the optimal choice is influenced by the interplay between
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the cost parameters of these two customer groups, as well as by how close the time of the

decision is to the end of the working day.

On the strategic level, the diagnostic facility can maximize expected profits by choosing

a favorable appointment schedule a. We assume that outpatient demand is high relative

to capacity and so all service slots reserved for outpatients will actually be scheduled.

Using the notation introduced above, we formulate the appointment scheduling problem

as follows:

V ∗ = max
a
[V a
1 (0, 0)] , (4)

where V ∗ denotes the optimal expected daily profits assuming the system begins empty

each day. This last assumption assures stability and simplifies our analysis. In reality, some

hospitals may have inpatients waiting for service in the beginning of the day, particularly

as a result of a backlog from the previous day. Our development of optimal real-time

allocation policies (section 4) can accommodate this case. The optimization model (1),

(3), (4) reflects the interaction between the strategic appointment scheduling and the

tactical capacity allocation in the daily operations of the medical diagnostic facility. In

the next section we investigate the properties of the optimal real-time capacity allocation

policy under an arbitrary appointment scheme.

4 Structural Properties of the Optimal Service Policy

Define GN+1 as the class of profit functions defined on SN+1 such that for every g ∈ GN+1

g (n, s+ 1)− g (n+ 1, s) ≤ g (n+ 1, s+ 1)− g (n+ 2, s) , (5)

g (n+ 1, s)− g (n, s+ 1) ≤ g (n+ 1, s+ 1)− g (n, s+ 2) , (6)

g (n, s)− g (n, s+ 1) ≤ g (n+ 1, s)− g (n+ 1, s+ 1) , (7)

g (n, s)− g (n+ 1, s) ≤ g (n+ 1, s)− g (n+ 2, s) , (8)
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g (n, s)− g (n, s+ 1) ≤ g (n, s+ 1)− g (n, s+ 2) , (9)

where we have assumed that all the states for which g is evaluated belong to SN+1. Sub-

modularity (7) of the profit function implies that when a diagnostic facility is shared

between two different patient classes, the profit improvement resulting from the reduction

in the number of waiting patients of one type (e.g., outpatients) is an increasing function

of the number of the second type patients (e.g., inpatients) waiting for service. (Note that

rearrangement of the terms results in a symmetric result.) The concavity of the profit

function also implies that a similar statement is valid with respect to increases in the

number of the same type of patients waiting for service. Both of these properties are intu-

itively appealing since they both underscore the increasing importance of wait reduction

as the congestion in the system grows. Using approaches developed in Topkis (1978) and

Glasserman and Yao (1994), we can establish that (5) and (6) have special implications

for the structure of optimal capacity allocation policies:

Proposition 1

For any f ∈ GN+1 and an arbitrary appointment scheme a, in each service period i =

1, ..., N the optimal capacity allocation policy belongs to the class of monotone “switching

curve” policies:

a) For any state (n, s) ∈ Si, there exists a critical index n
a
i (s) such that an outpatient

(inpatient) is selected for service if and only if n < nai (s) (n ≥ nai (s)).

b) Critical indices nai (s) form monotone sequences: (s1 ≥ s2)⇒ nai (s1) ≥ nai (s2).

This proposition establishes that for any given service slot and specified number of

patients of a given class (e.g. outpatients), it will be optimal to serve that class only if the

number of the other class (e.g. inpatients) is below a critical value. However, this critical

value increases as the number of outpatients increases. Therefore, the optimal policy

assigns service priority so as to balance the congestion due to the two patient classes.
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Switching curve capacity allocation policies outlined in Proposition 1 are similar to the

admission control policies established by Altman et al. (2001) and Örmeci et al. (2001)

for loss service systems, and the optimal control policies for make-to-stock/make-to-order

production systems derived by Ha (1997) and Carr and Duenyas (2000). However, these

papers analyzed stationary state, infinite horizon models, while our results pertain to a

transient, finite horizon system.

An example of the switching curve capacity allocation, determined by solving the dy-

namic program, is presented in Figure 1, where the appointment scheme is described

as ai = 1, i = 1, ..., 15, ai = 0, i = 16, ..., 20, and the penalty function is given by

f (n, s) = −s2πs − n2πn ∈ GN+1, for πs, πn ≥ 0. The switching curve policies introduced

in Proposition 1 reflect the real-time allocation of the capacity between the scheduled and

non-scheduled components of the demand for diagnostic services. The decision on which

type of waiting patient to serve next is clearly influenced by the problem’s parameters. In

particular, as the relative importance of a particular patient group increases, the values of

the critical indices change accordingly:

Proposition 2

a) For any f ∈ GN+1, and in each service period i = 1, ..., N , critical indices n
a
i (s) are

non-increasing functions of rn, wn, pn and non-decreasing functions of rs, ws, ps.

b) If f(n, s) = −nπn−sπs, nai (s) are non-increasing functions of πn and non-decreasing

functions of πs.

The general properties of the optimal capacity allocation policy presented in Proposi-

tions 1 and 2 are valid for arbitrary appointment schemes. In the next section we consider

a particular class of appointment schedules we call “threshold”. We show that the special

structure of threshold schedules allows us to develop a more detailed characterization of

the optimal capacity allocation policy.
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5 Threshold Appointment Schedules and Linear Penalty

Functions

Threshold appointment schedules, in which all service slots before a specified time are

used for scheduling outpatients and later slots are left open, are very common in hospital

diagnostic facilities. Since tight control of MRI purchases coupled with growing demand

typically result in waits of days or weeks for appointments, we make the assumption that

all designated outpatient slots are actually filled in advance with outpatients.

We designate the threshold, a∗, to be the last slot for which an appointment is made,

i.e., a∗ = max (i|ai = 1). Therefore, under this scheme we have ai = 1 if i ≤ a∗ and ai = 0

if i > a∗. Using this special structure, and assuming that the end-of-day penalty function

is linear, i.e. f(n, s) = −nπn − sπs, we can provide a sharper characterization of the

optimal tactical capacity allocation policy:

Proposition 3

Let πn + rn + wn ≥ πs + rs + ws and consider a service period i = 1, ..., N.

Then, (wn ≥ ws)⇒ nai (s) = 0, ∀i = 1, ..., N, ∀s = 0, ..., i.

Alternatively, wn < ws implies that

a)

V a
i (n, s+ 1)− V a

i (n+ 1, s) ≤ V a
i+1 (n, s+ 1)− V a

i+1 (n+ 1, s) , ∀(n, s) ∈ Si−1. (10)

b) there exists an index n∗i such that n
a
i (s) = n∗i , ∀i = 1, ..., N, ∀s = 0, ..., i.

c) the value of n∗i is independent of ps or appointment threshold a
∗.

d) n∗i is monotone decreasing with the service slot index i: n
∗
i+1 ≤ n∗i .

The statements of Proposition 3 imply that the condition πn + rn+wn ≥ πs + rs +ws

insures what we call a “critical” status for the inpatients: the likelihood of serving them
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increases as the end of the day approaches and, in particular, inpatients have priority in

the last slot of the day. In addition, inpatients acquire an absolute service priority over the

outpatients when wn ≥ ws. We note that similar results can be obtained for the case of

πn+rn+wn ≤ πs+rs+ws, when outpatients become the critical patient class. Proposition

3 also implies that for the threshold appointment approach, linear penalty costs insure that

the optimal switching curves defined in Proposition 1 take the simple form of “switching

indices”: outpatients are served if and only if the number of waiting inpatients is less than

the switching index value n∗i . It is important to note that this policy is independent of both

the number of outpatients in the system as well as the chosen threshold policy - a property

which is a direct consequence of the linearity of the penalty cost function. Clearly, the

results of Proposition 3 can be restated to yield an analogous result if outpatients are the

critical class. Therefore, the statement of the Proposition can be generalized as follows.

First, for any set of problem parameters one of the patient classes attains the “critical”

status. Second, if the waiting cost for the critical class dominates the waiting cost for the

non-critical class, it is optimal to employ “critical first” capacity rationing policy: critical

patients should be served whenever possible. Finally, if the waiting cost for the critical

patients is less than the waiting cost for non-critical ones, the critical class should be

served whenever the number of them waiting equals or exceeds the switching index value.

6 Linear Capacity Allocation Heuristic

Under the optimal capacity allocation policy described by Proposition 3, capacity man-

agement decisions are based on the time of day (slot index i) and the number of critical

customers waiting for service at that time. The fairly complex nature of this optimal

capacity allocation, especially for a large number of service slots, creates an incentive to

identify heuristic capacity allocation policies which may be easier to compute and im-

14



plement. The structure of the Bellman’s equation (1) and the initial condition (3) with

linear penalty function suggest a linear approximation for the optimal value function. The

following result formally describes such an approximation:

Proposition 4

Consider the finite horizon dynamic program

bV a
i (n, s)

= −sws − nwn + pepn
h
(1− psai+1) bV a

i+1 (n+ 1, s) + psai+1bV a
i+1 (n+ 1, s+ 1)

i
+pe (1− pn)

h
(1− psai+1) bV a

i+1 (n, s) + psai+1bV a
i+1 (n, s+ 1)

i
+pn (1− pe)

h
(1− psai+1) bHa

i+1 (n+ 1, s) + psai+1 bHa
i+1 (n+ 1, s+ 1)

i
+(1− pe)(1− pn)

h
(1− psai+1) bHa

i+1 (n, s) + psai+1 bHa
i+1 (n, s+ 1)

i
, i = 1, ..., N,

n ∈ Z, s ∈ Z, (11)

with

bHa
i (n, s) = max[bV a

i (n− 1, s) + rn, bV a
i (n, s− 1) + rs], n ∈ Z, s ∈ Z (12)

and

bV a
N+1 (n, s) = −sπs − nπn, n ∈ Z, s ∈ Z. (13)

Then,

bV a
i (n, s) = αin+ βis+ γi, (14)

where the values of coefficients αi, βi and γi are given by:

αi = −πn − (N − i+ 1)wn,

βi = −πs − (N − i+ 1)ws,

γi = γi+1 − pn (πn + (N − i)wn)− psai (πs + (N − i)ws)

+(1− pe)max (rn + πn + (N − i)wn, rs + πs + (N − i)ws) ,

i = 1, ..., N, γN+1 = 0. (15)
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Proposition 4 states that the removal of the special structure of the profit maximization

operator Ha
i (n, s) at the states where either n or s (or both) are equal to 0, leads to the

linearization of the optimal profit function. It is therefore to be expected that the linear

approximation (14) to the optimal value function works well in cases when the system

is subjected to high patient loads and therefore the probability of no waiting patient of

one or both types is low. Due to the linearity of (14) with respect to n and s, the choice

between serving an inpatient and an outpatient for a given service slot i does not depend

on the state of the system (n, s). In particular, we observe that for (14), the outpatients

are served if and only if the service slot index i does not exceed the critical value i∗h which

using (2) can be expressed as follows:

i∗h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
for (ws = wn, rn + πn ≥ rs + πs)

and
³
ws 6= wn, N − rn+πn−rs−πs

ws−wn ≤ 0
´
,

N,
for (ws = wn, rn + πn < rs + πs)

and
³
ws 6= wn,

rn+πn−rs−πs
ws−wn ≤ 0

´
,

Floor
h
N − rn+πn−rs−πs

ws−wn

i
, for

³
ws 6= wn, 0 < N − rn+πn−rs−πs

ws−wn < N
´
.

(16)

This linear approximation (LA) heuristic policy suggests that outpatients are served

in the beginning of the day (i ≤ i∗h) and inpatients at the end of the day (i > i∗h). We

explore the performance of this and other heuristic policies in the next section.

7 Numerical Study: Evaluating the Performance of

Heuristic Policies

We used data from the operations of the MRI facility in a large urban hospital as a

basis to explore the impact of the model parameters on the performance of alternative

strategic and tactical policies. Most of this data was collected over a three week period
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using a combination of observers and handwritten scheduling documents to determine the

total requests and actual arrivals for diagnostic service. We estimated the probability

of an inpatient demand to be pn = 0.4, and the probability of an emergency arrival to

be pe = 0.1. The estimate of ps = 0.84 was calculated from the total number of actual

outpatient arrivals relative to appointments. The number of examination slots per day,

N = 20, reflected a recently expanded operating schedule due to increasing backlogs.

Revenue and cost estimates were based largely on conversations with hospital managers.

We use rs = $1000 as the average fee charged by the hospital for an outpatient MRI

exam. Estimating the corresponding revenue for inpatients is much more problematic. As

explained earlier, inpatient charges are determined by a lump-sum DRG system. Any

given DRG category encompasses a considerable variety of possible resource options (e.g.

use of an MRI or not), and inpatients requiring an MRI come from a broad range of

DRG categories. In addition, though it is possible that the hospital could lose the revenue

from a scheduled outpatient if that outpatient decides not to use the hospital’s facility

after a long delay, it would be highly unusual for an inpatient request for an MRI not

to be met before leaving the facility. We decided to use rn = $200 as an estimate of

the inpatient fee, though admittedly this is somewhat speculative. The waiting costs ws

and wn were estimated as the opportunity costs of waiting for the duration of one service

period for each patient type. Since inpatients are in the hospital anyway, we assume that

wn = $0. For outpatients, we estimate their waiting cost as the average hourly wage by

taking the ratio of an estimate of the average annual salary ($30,000/year) and dividing

by the number of working hours per day (8) times the number of working days in a year

(250), or ws =
$30,000
8×250 = $15. This is based on the assumption that the typical service

period is one hour. The end-of-day penalty costs are perhaps the hardest parameters to

estimate. In our numerical studies, unless stated otherwise, we use the linear penalty

function V a
N+1 (n, s) = f (n, s) = −sπs − nπn, where πn = $2000 and πs = $100. Here
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we assume that the penalty associated with an inpatient who is not served by the end of

the day is the cost associated with an extra, uncompensated day in the hospital, while

the penalty associated with an outpatient is some combination of the cost associated with

conducting the examination using overtime and the loss of good will if the patient is not

examined that day.

Table 1 provides a summary of this set of problem parameters which we call the “base

case”. In order to compensate for the unreliability of some of the cost data as well as to

represent a spectrum of possible actual operating situations across hospitals, we expanded

our numerical experimental design to include a fairly broad range of values around this

basic set. We kept the parameter setting for outpatient revenue as rs = $1000 and varied

rn from a low of $0 to a high of $800. While it seemed reasonable to continue to assume

that wn = $0, we used values for ws ranging from $10 to $20. Since data obtained from

other hospitals indicated that the assumption of πn = $2000 was on the high end, we used

this as the uppermost value in our experiments and added the values of $500 and $1000.

And based on some initial numerical results and our hypothesis that the results would be

highly influenced by the ratio of the inpatient to outpatient penalty cost, we decided to let

πs vary from $100 to $300. In our experiments on the impact of the probability parameters,

we varied the probabilities of an inpatient arrival, pn, and an outpatient showing up for

an appointment, ps, from 0 to 1, and allowed the probability of an emergency arrival, pe,

to increase to 0.25.

We first explicitly compute the optimal capacity management policies for the base case.

We then numerically explore the performance of several heuristic tactical policies, including

the linear heuristic developed previously. Next, we propose and explore the performance

of several heuristic policies for scheduling outpatients. This is of particular interest since

we do not have any analytical results for the optimal appointment schedule. Finally, we

present the results of a simulation that tests the robustness of capacity management ap-
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proaches in the case when diagnostic service times are random. For each problem set we

studied, the optimal tactical capacity allocation policy for a given appointment schedule

was computed by solving the dynamic program (1)-(3) with f(n, s) = −πnn − πss. The

optimal appointment threshold was determined through a one-dimensional search for a

maximizer of (4) over all possible threshold values a∗ = 0, ..., N .

7.1 The Base Case

For the parameter values corresponding to our base case described by Table 1, Proposition

3 implies that inpatients are the critical class and that the optimal tactical policy takes the

form of switching indices. Figure 2a shows this optimal set of tactical switching indices as

well as the optimal threshold, a∗ = 15. Note that the switching indices, n∗i = 1 for i ≥ 15

indicate that inpatients have non-preemptive priority for these slots even if outpatients

are waiting.

Though this result may suggest that the period at which inpatients first get priority is

an upper bound for the optimal value of the appointment threshold, this is generally not

true. Figure 2b shows a counter-example for which the optimal policy combines scheduling

outpatients into all slots with a tactical policy which always gives inpatients priority (an

“inpatients first” policy). The problem data set used in this figure coincides with the

base case except for the costs associated with outpatients: ws = πs = 0. Structure of

the optimal policy for this case is not surprising since the condition ws = wn assures the

optimality of the inpatients first tactical policy from Proposition 3, while elimination of

the end-of-day penalty for outpatients makes it optimal to schedule as many as possible.
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7.2 Heuristic Service Policies

Since the optimal service policy described above is complex from a managerial perspective

and because it may be very difficult to obtain accurate estimates for all of the required data,

we are interested in exploring the performance of two simpler service policies: “critical

first” and the linear approximation (LA) heuristic derived in the previous section. The

critical first policy always gives service priority to a patient of the critical type (in the

sense of Proposition 3). For example, if rn + wn + πn > rs + ws + πs, the critical first

policy becomes an inpatients first policy, which is used by some hospitals motivated by the

financial (and perhaps, clinical) risk of potentially postponing inpatient exams to another

day. On the other hand, if rn + wn + πn < rs + ws + πs, the critical first policy assigns

absolute priority to outpatients, a practice followed by hospitals that want to avoid lost

outpatient revenue. Note that by Proposition 3, the critical first policy is optimal for

certain parameter settings and that the LA policy coincides with the critical first policy

when i∗h = 0 or when i∗h = N .

Table 2 shows the relative profit gap ε (in percentage) between the optimal service

policy and the critical first service policy, for a range of values for the “softer” parame-

ters, when each is used with the optimal threshold appointment policy (i.e., the one that

maximizes (4)). Note that the application of this heuristic leads to a loss of only 2.5% in

operational profits using the base case (highlighted) and that, in general, Table 2 indicates

that the critical first approach performs quite well for a wide range of parameters. Note

also that all cells in Table 2 for which the critical first heuristic is optimal correspond

to parameter sets such that: rs + ws + πs > rn + wn + πn and ws > wn, confirming the

optimality of the inpatients first policy as indicated by Proposition 3. The remaining cells

in Table 2 correspond to the case where rs + ws + πs < rn + wn + πn and ws > wn, i.e.,

the case where the inpatient class has critical status, but the critical first policy is not
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necessarily optimal. Another important observation is that the maximum performance

gap of 7.7% is achieved for one of these cases where the “status level” of outpatients,

rs + ws + πs = 1120, is also quite close to that of inpatients, rn + wn + πn = 1200. It

seems plausible that for such parameter sets the rough-cut critical first approach may need

to be replaced by a more refined alternative. Such an alternative is offered by the more

flexible LA heuristic which, for the same set of parameters as in Table 2, replicates the

performance of the critical first approach in all but three cases (out of 81). In these three

cases,the LA heuristic performs significantly better: 0.8% vs 3.0% for rn = 200, πn = 1000,

πs = 100, ws = 10, 0.3% vs. 5.2% for rn = 200, πn = 1000, πs = 100, ws = 15, and 0.0%

vs. 7.7% for rn = 200, πn = 1000, πs = 100, ws = 20. Note that all 3 parameter sets

correspond to cases where inpatient and outpatient “status levels” are close without one

class having absolute service priority over the other.

The advantage of the LA policy over the critical first approach for such cases is illus-

trated in Figure 3, where we vary the values of πs and πn, while keeping the rest of problem

parameters as in the base case. Figure 3a compares the performance of the two heuristics

in three distinct regions of parameter space. In the top region rs+ws+πs > rn+wn+πn

and so from Proposition 3 and (16), the LA policy reduces to the critical (outpatients) first

heuristic and is optimal. In the bottom region, which includes the base case and where

rs+ws+πs < rn+wn+πn−(N − 1) (ws − wn), the LA and critical first heuristics coincide

and their performance is suboptimal. Finally, in the middle band, where the status levels of

two patient classes are close (rn+wn+πn ≥ rs+ws+πs ≥ rn+wn+πn−(N − 1) (ws − wn)),

the LA heuristic dominates the critical first approach. The relative performance of the

two heuristics is shown in Figure 3b, in which πn is fixed at the base value of 2000 and

πs is varied. Note that as the ratio (rs + ws + πs)/(rn + wn + πn) approaches 1, the LA

heuristic, unlike critical first, approaches optimality in a monotone fashion. Such stable

near-optimal performance of the LA policy over a wide range of problem parameters makes
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it a preferred choice for a heuristic service policy. As explained in the previous section, the

performance of the LA heuristic should be even better for higher values of the probabilities

of patient arrivals pe, pn and ps since as the level of congestion in the service system grows,

the assumption underlying the linear approximation becomes increasingly accurate.

7.3 Heuristic Appointment Policies

Since unlike the tactical case, we have no analytical results for the optimal appointment

policy, it is particularly important to explore the performance of heuristic appointment

policies. We first restrict our attention to threshold policies for two reasons: (1) these

are the simplest and the most common in practice; and (2) we can identify the optimal

threshold policy by simple enumeration and hence quantify the performance of a heuristic

threshold policy. At the end of this section, we show that threshold policies are not

necessarily optimal.

We consider three heuristic threshold policies. The first one, which we call the “fill all

slots” (FAS) policy, is often used in practice by many facilities attempting to maximize

outpatient revenues. The FAS policy allocates all appointment slots to outpatients, i.e.,

a∗FAS = N .

The second heuristic appointment policy, which we call “balanced”, attempts to allo-

cate the capacity to match the expected demand for each patient class. Under this policy,

the appointment threshold a∗B is selected so that the number of unscheduled service slots

will be equal to the expected number of non-scheduled patient arrivals during the day.

Accounting for all possibilities, we get

a∗B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, for N(1−pn−pe)

ps
≤ 0,

N(1−pn−pe)
ps

, for 0 < N(1−pn−pe)
ps

≤ N,

N, for N(1−pn−pe)
ps

> N.

(17)
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The third heuristic appointment policy, which we call “newsvendor”, attempts to

achieve the most profitable allocation of scheduled and non-scheduled examination slots.

Under this policy, the appointment threshold a∗N is selected by disregarding the waiting

costs wn and ws and deriving an approximation for the expected daily profits achieved

under the threshold a∗. The derivation details are presented in the Appendix.

The relative performances of the FAS, balanced and newsvendor heuristics are pre-

sented in Tables 3a, 3b, and 3c, respectively. For each of these appointment policies we

selected the best “matching” tactical policy by solving the dynamic program (1). Note

that since the patient demand probabilities remain fixed in Table 3, the “balanced” ap-

pointment threshold, a∗B, is identical for all parameter combinations and equal to 11. a
∗
B is

also the lower bound for the optimal threshold in all of the cases we studied. (Of course,

a∗FAS = N is an upper bound on the optimal threshold). Thus, the balanced heuristic

allows too few outpatients into service while the FAS heuristic often allows too many.

These results indicate that the FAS policy is surprisingly good over a wide range of

parameter settings, and for the base case values, it is only 4.1% off the optimal perfor-

mance. As expected, Table 3a shows that the FAS performance decreases as the end-of-day

penalty cost for each patient type increases and is generally bad when both are high. It’s

performance also deteriorates as the outpatient waiting cost, ws, increases. In contrast,

Table 3b shows that the performance of the balanced heuristic improves as the end-of-day

penalty for outpatients, πs, increases, and also as waiting costs increase. Table 3b demon-

strates that the balanced heuristic generally performs worse than the FAS policy (in 51

out of 81 cases we studied) and, in particular, for the base case parameters, the balanced

heuristic is 9.2% off the optimal. So for the majority of cases we studied, deviations away

from the optimal threshold in the direction of limiting outpatients are penalized more than

similar deviations in the direction of allowing too many outpatients.
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Finally, Table 3c indicates that in a majority of problem cases we studied (72 out of

81), the newsvendor heuristic replicates the performance of the FAS heuristic. In the 9

remaining cases (rn = 200, πn = 1000, πs = 200, 300 and rn = 800, πn = 1000, πs = 300),

the newsvendor heuristic replicates the balanced one, performing worse than FAS in 6 cases

and better in 3 cases. So in most cases (75 out of 81), the more sophisticated newsvendor

heuristic “picks” the better of the FAS and the balanced heuristic, but overall, does not

improve upon FAS performance over a wide parameter range.

We also evaluated the performance of the combination of the LA heuristic proposed

in the last subsection with each of the appointment heuristics. Though our qualitative

observations regarding the relative performance of the three appointment heuristics in

Table 3 remain valid, the use of the LA policy, as expected, results in lower profits: the

performance of the FAS and newsvendor appointment policies for our base case declines

to 6.6%, while the performance of the balanced heuristic for the base case is now 11.6%.

Table 4 ranks the performance of these three capacity management heuristics over the

range of problem parameters we studied. The FAS-LA combination provides the best

performance in 56 (out of 81) cases studied, while the Newsvendor-LA policy is best in 53

cases. The balanced appointment policy in combination with the LA capacity allocation

is best in 30 cases. It’s important to note that that though the FAS-LA pairing has the

highest percentage of “hits”, the balanced heuristic is the best performer in cases when

the end-of-day penalties for both patient classes are high.

For our base case, the FAS-LA policy is the best capacity management recommenda-

tion among the heuristic policies we consider. Note that for the base case, the LA capacity

allocation reduces to the “inpatients first” policy. The strong performance of this some-

what counterintuitive policy is a consequence, among other factors, of the relatively low

probability of a patient arrival during any service slot with no scheduled outpatient. How-

ever, consistent with our observation above, if the value of πs in the base case is increased
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from 100 to 200, the balanced heuristic outperforms the FAS and newsvendor heuristics.

This example underscores the high degree of sensitivity of the performance of a particular

appointment scheme to changes in the penalty parameters.

For our base case, the FAS-LA policy is the best of the capacity management heuristics

we considered. Note that for this case, the LA policy reduces to the ”inpatients first”

policy. However, consistent with our observation above, if the value of πs in the base case

is increased from 100 to 200, the balanced heuristic outperforms the FAS and newsvendor

heuristics. This example underscores the high degree of sensitivity of the performance of a

particular appointment scheme to changes in the penalty parameters. It is also important

to note that our evaluation of these heuristics has been based solely on profitability: for the

base case the optimal expected profit is $8752, while the expected profits under the FAS-

LA and balanced-LA policies are $8393 and $7947, respectively. Yet, in many facilities, it

may be important to consider patient service as well, particularly for scheduled patients.

In order to understand the impact of these policies on service, we used a simulation

(see below) to estimate the expected number of outpatients left unserved at the end of

the operating day. Our results indicate that for the base case, the expected number of

unserved outpatients using the optimal policy is 2.6, but increases to 6.6 using the FAS-

LA heuristic, and goes down to 0.6 under the balanced-LA policy. So while the FAS-LA

heuristic does a good job in terms of achieving near-optimal expected profits, its “service”

performance is significantly worse than that of the optimal policy. On the other hand,

the balanced-LA heuristic exhibits superior service performance and may be a desirable

alternative to the optimal policy in more patient-oriented service environments.

Until this point, we have only considered threshold appointment policies. However,

there exist appointment schemes that can result in better performance than threshold

policies under certain conditions. An example of such an appointment scheme is a policy

under which regularly spaced examination slots are left unscheduled in order to provide
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slack uniformly over the day for emergencies and unscheduled inpatients. In general, it

seems reasonable to leave approximately (pe + pn)N equally spaced slots open to accom-

modate uniformly occurring emergency and inpatient demand. For the base case, with

pe = 0.1 and pn = 0.4, this results in a “fill alternative slots” (ALT) policy, with every odd

appointment slot being reserved for outpatients. Table 5 compares the expected profits of

the best threshold appointment scheme with that of the ALT policy (each appointment

policy was combined with the best matching tactical policy) for the following set of prob-

lem parameters: pe=0.1, rs=1000, ps=0.84, pn=0.4, πn=2000, πs=100. Note that in this

data set the largest values of waiting costs for both inpatient and outpatient delays are

relatively high. Clearly, this choice of parameters tilts the balance of performance in the

direction of the ALT policy which intentionally leaves empty slots to deal with unsched-

uled demand. We find that while for the base case, the best threshold policy outperforms

the ALT policy by about 20.8%, high waiting costs for both outpatients and inpatients

make the performance of threshold policies much worse than that of the ALT policy. It is

interesting to note that even when the waiting cost for outpatients is extremely high, the

threshold policy outperforms the ALT policy whenever wn = 0.

While the threshold approach to appointment management may not always be optimal,

we conjecture that its performance is either optimal or very near optimal for the realistic

problem parameters in Table 1. Of course, the verification of this conjecture even for

a given set of problem parameters for N = 20 service slots would require a substantial

computational effort resulting from the necessity to check all 2N possible appointment

schemes.
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7.4 The Impact of Stochastic Service Durations

A key assumption of our capacity management model (1)-(3) is that examination times

are fixed and equal to the length of each service slot. This assumption allows for a sharp

characterization of the optimal policies and may be justified in cases when there is little

variablility in the duration of diagnostic exams. However, in some facilities, the same

diagnostic capacity is used for many different types of exams and/or there is considerable

variability associated with each particular exam type.

To understand the impact of service time variability, we constructed a simulation of

the actual MRI facility we studied based on actual service times and using the base case

parameters. Figure 4 shows the histogram of these service times recorded over a 3 week

period along with the best fit to this distribution. Though the mean duration of the MRI

exams during this time (48 minutes) is very close to the length of the facility’s fixed service

slot (45 minutes) allocated by the facility for each exam, the standard deviation of 26 mins

is significant. This variability is largely due to the broad mix of MRI “studies” that fall into

six major categories ranging from non-contrast brain studies with a mean of 32 minutes

to abdomen studies with a mean of 61 minutes. Using the simulation model, we compared

the performance of two sets of policies: the optimal policy; and the FAS appointment

policy paired with the LA service policy (equivalent here to “inpatients first”), identified

above as the best combination of heuristics for this case.

As in the actual MRI facility, the simulation splits the operating day into 20 slots of

45 minutes each. In each slot, the incidence of inpatient and emergency arrivals are mod-

eled as independent Bernoulli random variables with parameters pn = 0.4 and pe = 0.1,

respectively; and the actual arrival times of inpatient and emergency patients within each

slot are simulated as independent uniform random variables. Outpatients are assumed to

arrive right before the beginning of the slot for which they were scheduled. Diagnostic
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service times are generated from the best fit distribution to the actual service times -

Weibull with the location parameter of 8.20, the scale parameter of 44.15 and the shape

parameter of 1.54. At the end of each service i, the numbers of inpatients (n) and outpa-

tients (s) waiting for service are counted and, if there are no emergency patients waiting,

the admission decision is made according to the service policy that is being simulated1

and the respective incremental revenue contribution is computed. At the same time, the

waiting costs are determined based on the numbers of each patient class left waiting. At

the end of operating day, (when the time equal to 20 service slots has elapsed), penalty

costs are assessed using the numbers of patients of each type left unserved.

We ran the simulation for 50,000 days for each policy and obtained the following results:

the mean profit under the optimal policy was $6558, with a mean standard error (MSE) of

$15 (as compared to $8752 earned in the case of fixed service times, as indicated in Table 5),

while the mean profit under the FAS-LA policy was $6431 with MSE of $17 (as compared

to $8174 in the case of fixed service times). These results prompt three observations. First,

and not surprisingly, the profits generated by both policies are significantly affected by the

uncertainty in the durations of diagnostic exams: mean profits generated by each policy

are 20%-25% less than those expected under fixed service times for this set of parameters.

Also, the relative ranking of two policies is unchanged; the optimal policy remains a better

performer. Finally, the relative performance gap between the two policies is significantly

reduced: from 6.6% in the case of fixed service times to 1.9% when real service times

are used. This performance gap reduction strengthens the argument of using the simple

1Note that the policy optimal for our base case model is describing the capacity allocation decisions

after the completions of i-th service with i = 1, ..., 20. When the service completion times are simulated,

it is possible that more than 20 patients can be served during a particular simulation run. In those cases,

we have used “critical first” admission policy for patients who are served after the completion of 20-th

diagnostic service. This necessary adjustment is not likely to worsen the performance of the policy since,

at the end of day, the absolute service priority for inpatients is likely to be optimal.
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FAS-LA heuristic as a capacity management policy in the facility we studied as well as in

other MRI facilities with similar parameter values.

8 Discussion

As more and more attention is being given to controlling the ever-escalating costs of

health care, it becomes increasingly important to identify ways to use health resources

more efficiently. Diagnostic imaging facilities are part of the larger category of health

care technology which has been identified as being one of the leading engines of increasing

health costs. Yet, due to the complexity of dealing with the competing demands for these

machines and a lack of understanding of all the costs (as well as the stochastic dynamics)

involved, MRI and other imaging facilities are often managed in ways which result in both

under-utilization of a very expensive resource and long patient delays.

The work described in this paper is the first attempt to gain insights into the manage-

ment of an MRI facility. Our analytical and numerical results strongly indicate that in

many cases, performance of such facilities can be significantly improved, often by the use

of simple heuristic policies. Though our work doesn’t reveal any single overall capacity

management policy that works well under virtually all circumstances, it does provide sub-

stantial guidance on how such policies should be chosen. In particular, our conclusions

based on our study of an actual MRI facility generally support the use of the LA heuristic

with a fill-all-slots (FAS) appointment policy for a wide range of realistic parameter values.

However, this work also highlights the sensitivity of these policies to several parameters,

particularly the end-of-day-penalties, which are often, particularly in the case of outpa-

tients, very hard to estimate. Given the less than 2% (or about $32,000 per year based

on 260 operating days) profit gap between the optimal and heuristic policies indicated by

our simulation of an actual MRI facility, as well as the relative simplicity of the heuristic
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rules compared to the switching curve, we conclude that it would be more beneficial for

managers to invest time and effort in improving the accuracy of the most critical data,

rather than in an information system to implement the dynamic program algorithm.

The model we propose as well as the results we obtain represent a promising step

in furthering the understanding of the management of diagnostic medical systems. Of

course, more work remains to be done. One potential complication, which we are currently

studying, is that the pattern of demand and the examination schedule may change from day

to day during the week. Thus, the time horizon for the analysis of capacity management

decisions might more appropriately be extended to a week. This extension would also

allow for a more detailed and accurate analysis of inpatient demand, which is sometimes

pushed over from one day to the next - a characteristic we couldn’t incorporate into our

single day framework. Other issues of importance include capacity allocation among

multiple magnets in the same facility, and strategies to address the issue of outpatient

cancellations. These indicate the need for further research in the area of management of

medical diagnostic capacity.
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Fig. 1: The switching curve capacity allocation at slot i=13 (ps=0.84, pe=0.1, pn=0.4, rs=1000, 
rn=200, ws=15, wn=0, πs=400, πn=500, N=20, f (n,s) =-s2πs-n2πn).
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Fig. 2: The optimal switching indices and the optimal appointment threshold for the problem 
with parameters from Table 1 (a) and for πs=ws=0 (b) (the remaining parameters are taken 
from Table 1).
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Table 1. Basic set of problem parameters.
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Table 2: Relative profit gaps (in %) between the optimal tactical policy and “critical first” 
policy (under optimal threshold appointment policy). pe=0.1, rs=1000, ps=0.84, pn=0.4, 
wn=0. 

rn πn πs=100 πs=200 πs=300 πs=100 πs=200 πs=300 πs=300πs=100 πs=200
ws=10 ws=15 ws=20

0 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2000 1.8 2.0 2.1 3.2 3.5 3.8 4.9 5.3 5.7

200 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 3.0 0.0 0.0 5.2 0.0 0.0 7.7 0.0 0.0
2000 1.4 1.5 1.6 2.5 2.7 2.8 3.8 4.0 4.2

800 500 1.6 2.0 0.0 2.8 3.5 0.0 4.1 5.1 0.0
1000 1.0 1.1 1.2 1.9 2.0 2.2 2.8 3.0 3.2
2000 0.8 0.8 0.8 1.4 1.5 1.5 2.1 2.2 2.3



Fig. 3: a) Ranking the LA and “critical first” heuristics (under optimal appointment 
policy) for different penalty cost values πn and πs, b) relative performance (in %) of two 
heuristics (under optimal appointment policy) as compared to the optimal tactical policy 
for different values of the outpatient end-of-day penalty cost πs. The rest of problem 
parameters are taken from Table 1.
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Tables 3ab: Relative performance (in %) of the “fill all slots” (a) and “balanced” (b) policies as 
compared to the optimal appointment policy. pe=0.1, rs=1000, ps=0.84, pn=0.4, wn=0. Highlighted 
cells correspond to the parameters from Table 1.

a

0 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 0.6 1.3 2.1 0.7 1.4 2.1 0.8 1.5 2.3
2000 4.0 9.7 16.6 4.9 11.0 18.1 5.9 12.4 19.7

200 500 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1
1000 3.1 6.4 7.1 3.8 6.5 7.3 4.4 6.7 7.5
2000 3.3 8.0 13.6 4.1 9.1 14.9 4.9 10.3 16.2

800 500 2.1 5.0 7.3 2.5 5.5 7.5 3.0 6.0 7.6
1000 2.1 5.1 8.6 2.6 5.7 9.3 3.1 6.4 10.0
2000 2.2 5.3 8.9 2.7 6.0 9.7 3.2 6.7 10.5

rn πn πs=100 πs=200 πs=300 πs=100 πs=200 πs=300 πs=300πs=100 πs=200
ws=10 ws=15 ws=20

0 500 34.2 33.8 33.4 34.0 33.7 33.3 33.9 33.6 33.1
1000 16.7 16.6 16.5 16.7 16.5 16.4 16.4 16.3 16.2
2000 12.1 9.7 8.0 11.1 8.8 7.0 9.9 7.9 6.1

200 500 24.6 24.1 23.7 24.4 24.0 23.6 24.3 23.9 23.5
1000 9.8 9.2 9.2 9.3 9.1 9.1 9.1 9.0 9.0
2000 10.1 8.0 6.5 9.2 7.2 5.7 8.2 6.5 4.9

800 500 6.4 5.2 5.0 5.9 4.9 4.9 5.4 4.9 4.8
1000 6.5 5.1 4.1 5.8 4.6 3.6 5.2 4.1 3.1
2000 6.7 5.3 4.3 6.1 4.7 3.7 5.4 4.2 3.1

rn πn πs=100 πs=200 πs=300 πs=100 πs=200 πs=300 πs=300πs=100 πs=200
b ws=10 ws=15 ws=20



Table 3c: Relative performance (in %) of the “newsvendor” policy as compared to the optimal 
appointment policy. pe=0.1, rs=1000, ps=0.84, pn=0.4, wn=0. Highlighted cells correspond to the 
parameters from Table 1.

ws=10 ws=15 ws=20c

0 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1000 0.6 1.3 2.1 0.7 1.4 2.1 0.8 1.5 2.3
2000 4.0 9.7 16.6 4.9 11.0 18.1 5.9 12.4 19.7

200 500 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
1000 3.1 9.2 9.2 3.8 9.1 9.1 4.3 9.0 9.0
2000 3.3 8.0 13.6 4.1 9.1 14.9 4.9 10.2 16.2

800 500 2.1 4.9 4.9 2.5 5.5 4.9 3.0 6.0 4.8
1000 2.1 5.1 8.6 2.6 5.7 9.3 3.1 6.4 10.0
2000 2.2 5.3 8.9 2.7 6.0 9.7 3.2 6.7 10.5

rn πn πs=100 πs=200 πs=300 πs=100 πs=200 πs=300 πs=300πs=100 πs=200

0 500 F,N F,N F,N F,N F,N F,N F,N F,N F,N
1000 F,N F,N F,N F,N F,N F,N F,N F,N F,N
2000 F,N F,N,B B F,N B B F,N B B

200 500 F,N F,N F,N F,N F,N F,N F,N F,N F,N
1000 F,N F F F,N F F F,N F F
2000 F,N F,N,B B F,N B B F,N B B

800 500 F,N F,N,B N,B F,N B N,B F,N B N,B
1000 F,N F,N,B B F,N B B F,N B B
2000 F,N F,N,B B F,N B B F,N B B

Table 4: Best performing threshold heuristic in combination with LA tactical policy: F=“Fill All 
Slots”, B=“Balanced”, N=“Newsvendor”. Same parameters as in Table 3.

rn πn πs=100 πs=200 πs=300 πs=100 πs=200 πs=300 πs=300πs=100 πs=200
ws=10 ws=15 ws=20



240246555981522755126514642767136935“Fill Alt. Slots”

125137576521432746127304810483908752Best Threshold
30010003001000300100wn=0

ws=300ws=100ws=15

Table 5: Profit values (in $) under “fill alternative slots” appointment policy and the best 
threshold policy. pe=0.1, rs=1000, ps=0.84, pn=0.4, rn=200, πn=2000, πs=100. Highlighted 
cells correspond to parameters from Table 1.
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Fig. 4: Histogram of the actual durations of the MRI exams over a 3 week period. The best fit 
(Weibull with the location parameter of 8.2, the scale parameter of 44.15 and the shape 
parameter of 1.54) is also shown. 
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