8 research outputs found

    A comparative study using an autostereoscopic display with augmented and virtual reality

    Full text link
    Advances in display devices are facilitating the integration of stereoscopic visualization in our daily lives. However, autostereoscopic visualization has not been extensively exploited. In this paper, we present a system that combines Augmented Reality (AR) and autostereoscopic visualization. We also present the first study that compares different aspects using an autostereoscopic display with AR and VR, in which 39 children from 8 to 10 years old participated. In our study, no statistically significant differences were found between AR and VR. However, the scores were very high in nearly all of the questions, and the children also scored the AR version higher in all cases. Moreover, the children explicitly preferred the AR version (81%). For the AR version, a strong and significant correlation was found between the use of the autostereoscopic screen in games and seeing the virtual object on the marker. For the VR version, two strong and significant correlations were found. The first correlation was between the ease of play and the use of the rotatory controller. The second correlation was between depth perception and the game global score. Therefore, the combinations of AR and VR with autostereoscopic visualization are possibilities for developing edutainment systems for childrenThis work was funded by the Spanish APRENDRA project (TIN2009-14319-C02). We would like to thank the following for their contributions: AIJU, the "Escola d'Estiu" and especially Ignacio Segui, Juan Cano, Miguelon Gimenez, and Javier Irimia. This work would not have been possible without their collaboration. The ALF3D project (TIN2009-14103-03) for the autostereoscopic display. Roberto Vivo, Rafa Gaitan, Severino Gonzalez, and M. Jose Vicent, for their help. The children's parents who signed the agreement to allow their children to participate in the study. The children who participated in the study. The ETSInf for letting us use its facilities during the testing phase.Arino, J.; Juan Lizandra, MC.; Gil Gómez, JA.; Mollá Vayá, RP. (2014). A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour and Information Technology. 33(6):646-655. https://doi.org/10.1080/0144929X.2013.815277S646655336Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355Blum, T.et al. 2012. Mirracle: augmented reality in-situ visualization of human anatomy using a magic mirror.In: IEEE virtual reality workshops, 4–8 March 2012, Costa Mesa, CA, USA. Washington, DC: IEEE Computer Society, 169–170.Botden, S. M. B. I., Buzink, S. N., Schijven, M. P., & Jakimowicz, J. J. (2007). Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference? World Journal of Surgery, 31(4), 764-772. doi:10.1007/s00268-006-0724-yChittaro, L., & Ranon, R. (2007). Web3D technologies in learning, education and training: Motivations, issues, opportunities. Computers & Education, 49(1), 3-18. doi:10.1016/j.compedu.2005.06.002Dodgson, N. A. (2005). Autostereoscopic 3D displays. Computer, 38(8), 31-36. doi:10.1109/mc.2005.252Ehara, J., & Saito, H. (2006). Texture overlay for virtual clothing based on PCA of silhouettes. 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. doi:10.1109/ismar.2006.297805Eisert, P., Fechteler, P., & Rurainsky, J. (2008). 3-D Tracking of shoes for Virtual Mirror applications. 2008 IEEE Conference on Computer Vision and Pattern Recognition. doi:10.1109/cvpr.2008.4587566Fiala, M. (2007). Magic Mirror System with Hand-held and Wearable Augmentations. 2007 IEEE Virtual Reality Conference. doi:10.1109/vr.2007.352493Froner, B., Holliman, N. S., & Liversedge, S. P. (2008). A comparative study of fine depth perception on two-view 3D displays. Displays, 29(5), 440-450. doi:10.1016/j.displa.2008.03.001Holliman, N. S., Dodgson, N. A., Favalora, G. E., & Pockett, L. (2011). Three-Dimensional Displays: A Review and Applications Analysis. IEEE Transactions on Broadcasting, 57(2), 362-371. doi:10.1109/tbc.2011.2130930Ilgner, J. F. R., Kawai, T., Shibata, T., Yamazoe, T., & Westhofen, M. (2006). Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. Stereoscopic Displays and Virtual Reality Systems XIII. doi:10.1117/12.647591Jeong, J.-S., Park, C., Kim, M., Oh, W.-K., & Yoo, K.-H. (2011). Development of a 3D Virtual Laboratory with Motion Sensor for Physics Education. Ubiquitous Computing and Multimedia Applications, 253-262. doi:10.1007/978-3-642-20975-8_28Jones, J. A., Swan, J. E., Singh, G., Kolstad, E., & Ellis, S. R. (2008). The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. Proceedings of the 5th symposium on Applied perception in graphics and visualization - APGV ’08. doi:10.1145/1394281.1394283Juan, M. C., & Pérez, D. (2010). Using augmented and virtual reality for the development of acrophobic scenarios. Comparison of the levels of presence and anxiety. Computers & Graphics, 34(6), 756-766. doi:10.1016/j.cag.2010.08.001Kaufmann, H., & Csisinko, M. (2011). Wireless Displays in Educational Augmented Reality Applications. Handbook of Augmented Reality, 157-175. doi:10.1007/978-1-4614-0064-6_6Kaufmann, H., & Meyer, B. (2008). Simulating educational physical experiments in augmented reality. ACM SIGGRAPH ASIA 2008 educators programme on - SIGGRAPH Asia ’08. doi:10.1145/1507713.1507717Konrad, J. (2011). 3D Displays. Optical and Digital Image Processing, 369-395. doi:10.1002/9783527635245.ch17Konrad, J., & Halle, M. (2007). 3-D Displays and Signal Processing. IEEE Signal Processing Magazine, 24(6), 97-111. doi:10.1109/msp.2007.905706Kwon, H., & Choi, H.-J. (2012). A time-sequential mutli-view autostereoscopic display without resolution loss using a multi-directional backlight unit and an LCD panel. Stereoscopic Displays and Applications XXIII. doi:10.1117/12.907793Livingston, M. A., Zanbaka, C., Swan, J. E., & Smallman, H. S. (s. f.). Objective measures for the effectiveness of augmented reality. IEEE Proceedings. VR 2005. Virtual Reality, 2005. doi:10.1109/vr.2005.1492798Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353. doi:10.1016/j.compedu.2006.12.008Montgomery, D. J., Woodgate, G. J., Jacobs, A. M. S., Harrold, J., & Ezra, D. (2001). Performance of a flat-panel display system convertible between 2D and autostereoscopic 3D modes. Stereoscopic Displays and Virtual Reality Systems VIII. doi:10.1117/12.430813Morphew, M. E., Shively, J. R., & Casey, D. (2004). Helmet-mounted displays for unmanned aerial vehicle control. Helmet- and Head-Mounted Displays IX: Technologies and Applications. doi:10.1117/12.541031Pan, Z., Cheok, A. D., Yang, H., Zhu, J., & Shi, J. (2006). Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 30(1), 20-28. doi:10.1016/j.cag.2005.10.004Petkov, E. G. (2010). Educational Virtual Reality through a Multiview Autostereoscopic 3D Display. Innovations in Computing Sciences and Software Engineering, 505-508. doi:10.1007/978-90-481-9112-3_86Shen, Y., Ong, S. K., & Nee, A. Y. C. (2011). Vision-Based Hand Interaction in Augmented Reality Environment. International Journal of Human-Computer Interaction, 27(6), 523-544. doi:10.1080/10447318.2011.555297Swan, J. E., Jones, A., Kolstad, E., Livingston, M. A., & Smallman, H. S. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE Transactions on Visualization and Computer Graphics, 13(3), 429-442. doi:10.1109/tvcg.2007.1035Urey, H., Chellappan, K. V., Erden, E., & Surman, P. (2011). State of the Art in Stereoscopic and Autostereoscopic Displays. Proceedings of the IEEE, 99(4), 540-555. doi:10.1109/jproc.2010.2098351Zhang, Y., Ji, Q., and Zhang, W., 2010. Multi-view autostereoscopic 3D display.In: International conference on optics photonics and energy engineering, 10–11 May 2010, Wuhan, China. Washington, DC: IEEE Computer Society, 58–61

    A 3D serious game for dental learning in higher education

    Get PDF
    Natural User Interfaces and advanced displays can be combined to provide rich learning experiences. In this paper, we present the development and validation of a serious game that combines autostereoscopy and Natural User Interfaces for dental learning in higher education. The game includes two modes: neutral and real-world background. A comparative study to check different aspects was carried out. A total of 33 dentistry students participated in the study. From the results, the students increased significantly their knowledge about teeth morphology. Most of the students preferred the neutral background for dental learning. The real-world background was identified as being more suitable for leisure activities

    Playful interaction for learning collaboratively and individually

    Full text link
    Playful interactions facilitate the development of engaging applications for different purposes. This aspect is very important for serious games, and especially when these games are for children. Another aspect to consider is the interaction among children, which could be a great reinforcement in learning environments. Children enjoy playing, and they like playing with other children. This relationship could encourage their motivation and their learning outcomes. In this paper, a playful interaction system for learning about a period of history is presented. The interaction of the system was achieved using natural gestures and the visuali-zation was autostereoscopic. A study was carried out to determine whether their learning outcomes were greater playing collabo-ratively or playing individually. Forty six children from 7 to 10 years old participated in the study. The analysis of the pre-tests and the post-tests indicate that the children increased their knowledge about historical periods after playing with the two modes. Therefore, the game could be used as an effective transmitter of knowledge both collaboratively and individually. When the post-knowledge scores for the two modes were compared, statistically significant differences were found in favor of the collaborative mode. Therefore, the collaborative mode facilitates learning to a greater extent than the individual mode. The rest of the questions indicated that the children had a lot of fun while playing the game; they found the game easy to play; they would recommend the game to their friends; and they scored the game as a mean of 9.57 over 10. Finally, we believe that the combination of playful interaction and autostereoscopy is an option that should be exploited not only for the development of computer-supported learning systems, but also for the development of systems for different purposesThis work was funded by the Spanish APRENDRA project (TIN2009-14319-C02-01).Martín San José, JF.; Juan Lizandra, MC.; Torres, E.; Vicent López, MJ. (2014). Playful interaction for learning collaboratively and individually. Journal of Ambient Intelligence and Smart Environments. 6(3):295-311. https://doi.org/10.3233/AIS-140257S2953116

    Comparative study of AR versus video tutorials for minor maintenance operations

    Full text link
    [EN] Augmented Reality (AR) has become a mainstream technology in the development of solutions for repair and maintenance operations. Although most of the AR solutions are still limited to specific contexts in industry, some consumer electronics companies have started to offer pre-packaged AR solutions as alternative to video-based tutorials (VT) for minor maintenance operations. In this paper, we present a comparative study of the acquired knowledge and user perception achieved with AR and VT solutions in some maintenance tasks of IT equipment. The results indicate that both systems help users to acquire knowledge in various aspects of equipment maintenance. Although no statistically significant differences were found between AR and VT solutions, users scored higher on the AR version in all cases. Moreover, the users explicitly preferred the AR version when evaluating three different usability and satisfaction criteria. For the AR version, a strong and significant correlation was found between the satisfaction and the achieved knowledge. Since the AR solution achieved similar learning results with higher usability scores than the video-based tutorials, these results suggest that AR solutions are the most effective approach to substitute the typical paper-based instructions in consumer electronics.This work has been supported by Spanish MINECO and EU ERDF programs under grant RTI2018-098156-B-C55.Morillo, P.; García García, I.; Orduña, JM.; Fernández, M.; Juan, M. (2020). Comparative study of AR versus video tutorials for minor maintenance operations. Multimedia Tools and Applications. 79(11-12):7073-7100. https://doi.org/10.1007/s11042-019-08437-9S707371007911-12Ahn J, Williamson J, Gartrell M, Han R, Lv Q, Mishra S (2015) Supporting healthy grocery shopping via mobile augmented reality. ACM Trans Multimedia Comput Commun Appl 12(1s):16:1–16:24. https://doi.org/10.1145/2808207Anderson TW (2011) Anderson–darling tests of goodness-of-fit. Springer, Berlin, pp 52–54. https://doi.org/10.1007/978-3-642-04898-2_118Awad N, Lewandowski SE, Decker EW (2015) Event management system for facilitating user interactions at a venue. US Patent App. 14/829,382Azuma R (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6(4):355–385Baird K, Barfield W (1999) Evaluating the effectiveness of augmented reality displays for a manual assembly task. Virtual Reality 4:250–259Ballo P (2018) Hardware and software for ar/vr development. In: Augmented and virtual reality in libraries, pp 45–55. LITA guidesBarrile V, Fotia A, Bilotta G (2018) Geomatics and augmented reality experiments for the cultural heritage. Applied Geomatics. https://doi.org/10.1007/s12518-018-0231-5Billinghurst M, Duenser A (2012) Augmented reality in the classroom. Computer 45(7):56–63. https://doi.org/10.1109/MC.2012.111Bowman DA, McMahan RP (2007) Virtual reality: how much immersion is enough? Computer 40(7)Brown TA (2015) Confirmatory factor analysis for applied research. Guilford PublicationsDodge Y. (ed) (2008) Kruskal-Wallis test. Springer, New York. https://doi.org/10.1007/978-0-387-32833-1_216Elmunsyah H, Hidayat WN, Asfani K (2019) Interactive learning media innovation: utilization of augmented reality and pop-up book to improve user’s learning autonomy. J Phys Conf Ser 1193(012):031. https://doi.org/10.1088/1742-6596/1193/1/012031Entertainment L (2017) Dolphin Player. https://play.google.com/store/apps/details?id=com.broov.player. Online; Accessed 09-September-2017Fletcher J, Belanich J, Moses F, Fehr A, Moss J (2017) Effectiveness of augmented reality & augmented virtuality. In: MODSIM Modeling & simulation of systems and applications) world conferenceFraga-Lamas P, Fernández-Caramés TM, Blanco-Novoa O, Vilar-Montesinos MA (2018) A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access 6:13,358–13,375. https://doi.org/10.1109/ACCESS.2018.2808326Furió D, Juan MC, Seguí I, Vivó R (2015) Mobile learning vs. traditional classroom lessons: a comparative study. J Comput Assist Learn 31(3):189–201. https://doi.org/10.1111/jcal.12071Gavish N, Gutiérrez T, Webel S, Rodríguez J, Peveri M, Bockholt U, Tecchia F (2015) Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interact Learn Environ 23(6):778–798. https://doi.org/10.1080/10494820.2013.815221Gimeno J, Morillo P, Orduña JM, Fernández M (2013) A new ar authoring tool using depth maps for industrial procedures. Comput Ind 64(9):1263–1271. https://doi.org/10.1016/j.compind.2013.06.012Holzinger A, Kickmeier-Rust MD, Albert D (2008) Dynamic media in computer science education; content complexity and learning performance: is less more? Educational Technology & Society 11(1):279–290Hornbaek K (2013) Some whys and hows of experiments in human–computer interaction. Foundations and TrendsⓇ in Human–Computer Interaction 5(4):299–373. https://doi.org/10.1561/1100000043Huang J, Liu S, Xing J, Mei T, Yan S (2014) Circle & search: Attribute-aware shoe retrieval. ACM Trans Multimedia Comput Commun Appl 11 (1):3:1–3:21. https://doi.org/10.1145/2632165Jiang S, Wu Y, Fu Y (2018) Deep bidirectional cross-triplet embedding for online clothing shopping. ACM Trans Multimedia Comput Commun Appl 14(1):5:1–5:22. https://doi.org/10.1145/3152114Kim SK, Kang SJ, Choi YJ, Choi MH, Hong M (2017) Augmented-reality survey: from concept to application. KSII Transactions on Internet and Information Systems 11:982–1004. https://doi.org/10.3837/tiis.2017.02.019Langlotz T, Zingerle M, Grasset R, Kaufmann H, Reitmayr G (2012) Ar record&replay: Situated compositing of video content in mobile augmented reality. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, OzCHI ’12. ACM, New York, pp 318–326, DOI https://doi.org/10.1145/2414536.2414588, (to appear in print)Martin-SanJose JF, Juan MC, Mollá R, Vivó R (2017) Advanced displays and natural user interfaces to support learning. Interact Learn Environ 25(1):17–34. https://doi.org/10.1080/10494820.2015.1090455Massey FJ (1951) The kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78van der Meij H, van der Meij J, Voerman T, Duipmans E (2018) Supporting motivation, task performance and retention in video tutorials for software training. Educ Technol Res Dev 66(3):597–614. https://doi.org/10.1007/s11423-017-9560-zvan der Meij J, van der Meij H (2015) A test of the design of a video tutorial for software training. J Comput Assist Learn 31 (2):116–132. https://doi.org/10.1111/jcal.12082Mestre LS (2012) Student preference for tutorial design: a usability study. Ref Serv Rev 40(2):258–276. https://doi.org/10.1108/00907321211228318Mohr P, Kerbl B, Donoser M, Schmalstieg D, Kalkofen D (2015) Retargeting technical documentation to augmented reality. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI ’15. ACM, New York, pp 3337–3346, DOI https://doi.org/10.1145/2702123.2702490, (to appear in print)Mohr P, Mandl D, Tatzgern M, Veas E, Schmalstieg D, Kalkofen D (2017) Retargeting video tutorials showing tools with surface contact to augmented reality. In: Proceedings of the 2017 CHI conference on human factors in computing systems, CHI ’17. ACM, New York, pp 6547–6558, DOI https://doi.org/10.1145/3025453.3025688, (to appear in print)Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers. Wiley, New YorkMorillo P, Orduña JM, Casas S, Fernández M (2019) A comparison study of ar applications versus pseudo-holographic systems as virtual exhibitors for luxury watch retail stores. Multimedia Systems. https://doi.org/10.1007/s00530-019-00606-yMorse JM (2000) Determining sample size. Qual Health Res 10(1):3–5. https://doi.org/10.1177/104973200129118183Muñoz-Montoya F, Juan M, Mendez-Lopez M, Fidalgo C (2019) Augmented reality based on slam to assess spatial short-term memory. IEEE Access 7:2453–2466. https://doi.org/10.1109/ACCESS.2018.2886627Neuhäuser M (2011) Wilcoxon–Mann–Whitney test. Springer, Berlin, pp 1656–1658Neumann U, Majoros A (1998) Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance. In: Inproceedings of the IEEE virtual reality annual international symposium (VR ’98), pp 4–11no JJA, Juan MC, Gil-Gómez JA, Mollá R. (2014) A comparative study using an autostereoscopic display with augmented and virtual reality. Behaviour & Information Technology 33(6):646–655. https://doi.org/10.1080/0144929X.2013.815277Palmarini R, Erkoyuncu JA, Roy R, Torabmostaedi H (2018) A systematic review of augmented reality applications in maintenance. Robot Comput Integr Manuf 49:215–228Quint F, Loch F (2015) Using smart glasses to document maintenance processes. Mensch und Computer 2015–WorkshopbandRadkowski R, Herrema J, Oliver J (2015) Augmented reality-based manual assembly support with visual features for different degrees of difficulty. International Journal of Human–Computer Interaction 31(5):337–349. https://doi.org/10.1080/10447318.2014.994194Regenbrecht H, Schubert T (2002) Measuring presence in augmented reality environments: design and a first test of a questionnaire, Porto, PortugalRobertson J (2012) Likert-type scales, statistical methods, and effect sizes. Commun ACM 55(5):6–7. https://doi.org/10.1145/2160718.2160721Rodríguez-Andrés D, Juan MC, Méndez-López M, Pérez-Hernández E, Lluch J (2016) Mnemocity task: Assessment of childrens spatial memory using stereoscopy and virtual environments. PLos ONE 1(8). https://doi.org/10.1371/journal.pone.0161858Sanna A, Manuri F, Lamberti F, Paravati G, Pezzolla P (2015) Using handheld devices to support augmented reality-based maintenance and assembly tasks. In: 2015 IEEE International conference on consumer electronics (ICCE), pp. 178–179. https://doi.org/10.1109/ICCE.2015.7066370Schmidt S, Ehrenbrink P, Weiss B, Voigt-Antons J, Kojic T, Johnston A, Moller S (2018) Impact of virtual environments on motivation and engagement during exergames. In: 2018 Tenth international conference on quality of multimedia experience (qoMEX), pp 1–6. https://doi.org/10.1109/QoMEX.2018.8463389Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611Tang A, Owen C, Biocca F, Mou W (2003) Comparative effectiveness of augmented reality in object assembly. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’03. ACM, New York, pp 73–80, DOI https://doi.org/10.1145/642611.642626, (to appear in print)Tomás JM, Oliver A, Galiana L, Sancho P, Lila M (2013) Explaining method effects associated with negatively worded items in trait and state global and domain-specific self-esteem scales. Structural Equation Modeling: A Multidisciplinary Journal 20(2):299–313. https://doi.org/10.1080/10705511.2013.769394Uva AE, Gattullo M, Manghisi VM, Spagnulo D, Cascella GL, Fiorentino M (2017) Evaluating the effectiveness of spatial augmented reality in smart manufacturing: a solution for manual working stations. The Int J Adv Manuf Technol: 1–13Wang X, Ong SK, Nee AYC (2016) A comprehensive survey of augmented reality assembly research. Advances in Manufacturing 4(1):1–22. https://doi.org/10.1007/s40436-015-0131-4Westerfield G, Mitrovic A, Billinghurst M (2015) Intelligent augmented reality training for motherboard assembly. Int J Artif Intell Educ 25(1):157–172. https://doi.org/10.1007/s40593-014-0032-xWiedenmaier S, Oehme O, Schmidt L, Luczak H (2003) Augmented reality (ar) for assembly processes - design and experimental evaluation. International Journal of Human-Computer Interaction 16(3):497–514Witmer BG, Singer MJ (1998) Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments 7(3):225–240Wu HK, Lee SWY, Chang HY, Liang JC (2013) Current status, opportunities and challenges of augmented reality in education. Computers & Education 62:41–49. https://doi.org/10.1016/j.compedu.2012.10.024Yim MYC, Chu SC, Sauer PL (2017) Is augmented reality technology an effective tool for e-commerce? an interactivity and vividness perspective. Journal of Interactive Marketing 39(http://www.sciencedirect.com/science/article/pii/S1094996817300336):89–103. https://doi.org/10.1016/j.intmar.2017.04.001Yuan ML, Ong SK, Nee AYC (2008) Augmented reality for assembly guidance using a virtual interactive tool. Int J Prod Res 46(7):1745–1767. https://doi.org/10.1080/0020754060097293

    Natural user interfaces and autostereoscopy for learning in dentistry

    Full text link
    [ES] En este trabajo de fín de máster, presentamos el desarrollo de un "juego serio" que combina autoestereoscopía e interfaces naturales de usuario en un entorno de educación superior. Para nuestro conocimiento, es la primera vez que una aplicaci on de estas caracter sticas es desarrollada y probada. Hemos desarrollado un juego que puede trabajar en dos modos, con un fondo real o con un fondo neutro. En los dos modos, dos manos virtuales se situan superpuestas a las manos del usuario en la pantalla. En el modo real las manos del avatar se situan encima de las manos del usuario, y el usuario puede ver el resto de su cuerpo. En el modo neutro, los usuarios saben donde estan situadas las manos gracias a las manos virutales, ya que no pueden ver su propio cuerpo. Nuestra hipótesis inicial era que, ya que el fondo real ofrece mas ayudas de la posición del usuario que el fondo neutro, habrá diferencias estadísticas significativas en el conocimiento adquirido por los usuarios. Treinta y tres estudiantes de odontología probaron el sistema. Los estudiantes estaban divididos en dos grupos para probar los dos sistemas. Realizamos un estudio para corroborar nuestra hipótesis. Hicimos un análisis estadistico de los resultados obtenidos en las pruebas. En los resultados obtuvimos que los usuarios aumentaban su conocimiento sobre el tópico del juego (morfología dental), y el incremento de conocimiento en los dos grupos fue muy similar. La mayoria de los usuarios preferían el fondo neutro ya que este fondo les distraía menos de la actividad que estaban realizando. Como conclusión final, el juego ha tenido una buena aceptación entre los estudiantes y los profesores, quienes nos recomendaron seguir trabajando en la aplicación y desarrollar nuevos sistemas sobre aprendizaje dental[EN] In this thesis, we present the development of a new ¿serious¿ game that combines autostereoscopy and NUI for dental learning in higher education. To our knowledge, this is the first time a game of these characteristics has been presented. We developed a NUI game that can work in two modes, with a real background and with a neutral background. In the two modes, two avatar hands appear in the position where the users¿ hands are. In the real-background mode, the avatar hands are over the hands of the user, and the users can see the rest of their own body. In the neutral background mode, the users know their hand position from the avatar hands. Our hypothesis was that since the real-world background o ers more cues than the neutral background for a more e ective NUI, there would be a statistically signi cant improvement in knowledge. We tested the systems with thirty-three dentistry students. The students had divided in two groups to test the two systems. We carried out a study to test our hypothesis. We perform a statistical analysis of the results obtained in the tests. We obtained that the users increased their knowledge about the topic of the game (teeth morphology), and the increment of knowledge in both (real-world and neutral background) systems was similar. Most of the users preferred the neutral background for a dental application because it disturbed them less than the real-world background. As a final conclusion, the game has been well received by students and professors who recommend us to continue working in the system and to develop new applications about learning in dentistry.Rodríguez Andrés, D. (2013). Natural user interfaces and autostereoscopy for learning in dentistry. http://hdl.handle.net/10251/36150Archivo delegad

    Autostereoscopy vs. non-autostereoscopy on the LG Optimus 3D

    Full text link
    [ES] El rápido aumento de los dispositivos con características 3D ha permitido una serie de sistemas de entretenimiento nuevos y avanzados para casa, hecho que ha aumentado la demanda de contenidos en 3D: películas en 3D, series en 3D y videojuegos en 3D. Esta tecnología ya se ha aplicado en las pantallas de los teléfonos inteligentes y videoconsolas portátiles. En esta tesina, se realizó un estudio sobre una aplicación para dispositivos Android con dos modos de visualización e interacción con el usuario: con autoestereoscopía y sin autoestereoscopía. Esta aplicación contiene varios objetos, tanto estáticos como dinámicos, en un entorno 3D. Tras realizar la evaluación, los resultados indican el alto grado de interés que tienen los contenidos en 3D para juegos en teléfonos inteligentes. Sin embargo, los problemas de percepción de objetos virtuales en 3D demuestran que esta tecnología todavía necesita mejoras para proporcionar una percepción de profundidad sin pérdida de nitidez en la imagen para que sea adecuada a un amplio grupo de la población.[EN] The rapid increase of 3D capable devices has provided a series of new and advanced home entertainment systems; that indicates a higher number of demands for 3D contents, such as 3D movies, 3D TV series and 3D games. As a result, this technology has been applied already on the displays of Smartphones and handheld video gaming consoles. In this thesis, a study between autostereoscopy and non-autostereoscopy on a Smartphone was carried out by testing a new Android application that provides both visualization modes with user interactions. The new app contains a number of static and dynamic objects in a 3D environment. Evaluation findings indicate that people are interested in 3D game content on Smartphones. However, perception issues of 3D virtual objects and loss of picture quality demonstrate that this technology still needs further improvements before it can become suitable for all groups of people.Kaczmarczyk, KM. (2013). Autostereoscopy vs. non-autostereoscopy on the LG Optimus 3D. http://hdl.handle.net/10251/37109Archivo delegad

    Sistemi immersivi per contesti sociali: come progettare e sviluppare nuovi tipi di esperienze ed interazioni

    Get PDF
    In questo lavoro verr\ue0 affrontato e discusso il concetto di esperienza immersiva e delle tematiche ad esso collegate con l\u2019obiettivo finale di individuare e descrivere i principali fattori da tenere in considerazione durante la progettazione e lo sviluppo di artefatti digitali immersivi in contesti sociali. Nella prima parte del lavoro verranno quindi introdotti i concetti di immersivit\ue0, le tecnologie che consentono la creazione della sensazione di immersione e i sensi che vengono stimolati. La seconda parte del lavoro introduce invece quella che \ue8 una classificazione dei contesti in cui \ue8 possibile fruire questo tipo di esperienze, permettendo quindi di evidenziare possibili differenze tra le necessit\ue0, i vincoli e gli agenti presenti all\u2019interno di ciascuno. La combinazione e l\u2019applicazione dei primi due argomenti ha portato a dover affrontare e definire il concetto di esperienza immersiva, le teorie e i concetti importanti da seguire per una sua buona realizzazione. Durante l\u2019argomentazione delle tematiche relative al concetto di esperienza immersiva si \ue8 arrivati a delineare quelli che sono gli elementi caratterizzanti di questo tipo di esperienze (social contexts, environment, content, fruition, people relation, people disabilities, involved display, tracking e outcomes) e che si vanno a riflettere su quattro variabili principali da tenere in considerazione durante la progettazione, lo sviluppo e l\u2019analisi. Queste riflessioni hanno portato alla concezione di un modello che si basa sulla descrizione delle informazioni legate al contesto in cui l\u2019esperienza viene fruita (Context), la tipologia di utenti coinvolti (Users), la tecnologia necessarie per lo sviluppo (Technology), e le competenze necessarie per la sua realizzazione (Expertise). Tale modello, abbreviato in CUTE (Context, Users, Technology, Expertise), \ue8 stato poi quindi utilizzato per la progettazione e lo sviluppo delle esperienze immersive realizzate durante l\u2019intero percorso di dottorato oltre che per l\u2019analisi di progetti esistenti a cui si \ue8 contribuito, permettendo di evidenziare con facilit\ue0 le alternative che i singoli elementi sono in grado assumere e consentendo l\u2019identificazione di bisogni, requisiti e problematiche in maniera agile per ciascuna delle singole variabili. Le singole esperienze hanno riguardato lo sviluppo di funzionalit\ue0 aggiuntive per un simulatore di operazioni videolaparoscopiche; la progettazione e sviluppo di un prototipo di simulatore di parto; lo sviluppo di un\u2019esperienza di realt\ue0 aumentata in contesto education per l\u2019apprendimento; la creazione di un virtual coach per il recupero motorio; un survey sulle possibili alternative d\u2019uso di Natural User Interfaces su dispositivi mobile; uno studio su un\u2019applicazione per la fruizione di luoghi non accessibili a causa di limiti strutturali degli ambienti o fisici/cognitivi degli utenti; la realizzazione di un prototipo immersivo per la progettazione di spazi dedicati a eventi pubblici; lo sviluppo di un\u2019applicazione dedicata al immersive journalism; ed infine lo studio di un sistema intelligente per lo smaltimento dei rifiuti. Nelle conclusioni verranno i ripresi i concetti introdotti nelle varie sezioni e che insieme ai risultati emersi dalle singole esperienze permetteranno di fare delle riflessioni sulla readiness, cio\ue8 il livello di prontezza operativa, dei singoli contesti rispetto all\u2019introduzione delle tecnologie immersive oltre che delle considerazioni sull\u2019applicabilit\ue0 e le possibili evoluzioni del modello CUTE sviluppato.This work will analyze the concept of \u201cimmersive experience\u201d and notions related to it, with the final aim to identify and describe the key elements to consider when designing and developing immersive digital artifacts in social contexts. The first part of the dissertation introduces the concepts of immersiveness and immersion, with a specific focus on technologies able to stimulate various human senses, thus enabling a perception called \u201csense of immersion\u201d. Then, I will classify the possible social contexts in which an immersive experience can happen, highlighting the differences in terms of needs, constraints and agents involved. The combination of the knowledge belonging to immersion and social contexts leads to a deeper concept of immersive experience with theories and best practices useful for its development. This insight allowed the categorization of nine key elements that shape an immersive experience: social contexts, environment, content, fruition, people relation, people disabilities, involved display, tracking and outcomes. Such elements converge in four different variables to consider during the stages of analysis, design and development. Such variables refer to the information related to the context in which the experience occurs, the kind of users involved, the technologies and expertise required to complete the development. Starting from these considerations, I developed a model named CUTE (Context, Users, Technologies, Expertise) that can be used to analyze existing products and develop new projects. The model has been used for all the immersive experiences I realized during these years of PhD. In particular, the development of additional features for a videolaparoscopic simulator; the design and development of a birth simulator; the development of an augmented reality experience in educational context; a survey on the possible alternatives to enable Natural User Interfaces on mobile devices; the creation of a virtual coach for motor recovery; the development of an application to visit inaccessible places; the creation of an immersive solution for the design of public spaces and events; the development of an application dedicated to immersive journalism; the study of an intelligent system for waste disposal. Altogether the concepts introduced in the various sections and the results of single experiences gives hints about the readiness of the individual contexts regarding the introduction of immersive technologies as well as considerations on the applicability and possible evolutions of the CUTE model developed
    corecore