3 research outputs found

    A comparative study of classifier combination applied to NLP tasks

    Get PDF
    The paper is devoted to a comparative study of classifier combination methods, which have been successfully applied to multiple tasks including Natural Language Processing (NLP) tasks. There is variety of classifier combination techniques and the major difficulty is to choose one that is the best fit for a particular task. In our study we explored the performance of a number of combination methods such as voting, Bayesian merging, behavior knowledge space, bagging, stacking, feature sub-spacing and cascading, for the part-of-speech tagging task using nine corpora in five languages. The results show that some methods that, currently, are not very popular could demonstrate much better performance. In addition, we learned how the corpus size and quality influence the combination methods performance. We also provide the results of applying the classifier combination methods to the other NLP tasks, such as name entity recognition and chunking. We believe that our study is the most exhaustive comparison made with combination methods applied to NLP tasks so far

    Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data

    Get PDF
    Ensemble classification is a well-established approach that involves fusing the decisions of multiple predictive models. A similar “ensemble logic” has been recently applied to challenging feature selection tasks aimed at identifying the most informative variables (or features) for a given domain of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the effects and the implications of a specific ensemble approach, namely the data perturbation strategy. Basically, it consists in combining multiple selectors that exploit the same core algorithm but are trained on different perturbed versions of the original data. The real potential of this approach, still object of debate in the feature selection literature, is here investigated in conjunction with different kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the extent to which the ensemble implementation improves the overall performance of the selection process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the training data). Furthermore, we measure the impact of the ensemble approach on the final selection outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public genomic benchmarks provide useful insight on both the benefits and the limitations of such ensemble approach, paving the way to the exploration of new and wider ensemble schemes
    corecore