31,754 research outputs found

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    A Periodicity Metric for Assessing Maintenance Strategies

    Get PDF
    Organised by: Cranfield UniversityThe maintenance policy in manufacturing systems is devised to reset the machines functionality in an economical fashion in order to keep the products quality within acceptable levels. Therefore, there is a need for a metric to evaluate and quantify function resetting due to the adopted maintenance policy. A novel metric for measuring the functional periodicity has been developed using the complexity theory. It is based on the rate and extent of function resetting. It can be used as an important criterion for comparing the different maintenance policy alternatives. An industrial example is used to illustrate the application of the new metric.Mori Seiki – The Machine Tool Company; BAE Systems; S4T – Support Service Solutions: Strategy and Transitio

    HFR Code: A Flexible Replication Scheme for Cloud Storage Systems

    Full text link
    Fractional repetition (FR) codes are a family of repair-efficient storage codes that provide exact and uncoded node repair at the minimum bandwidth regenerating point. The advantageous repair properties are achieved by a tailor-made two-layer encoding scheme which concatenates an outer maximum-distance-separable (MDS) code and an inner repetition code. In this paper, we generalize the application of FR codes and propose heterogeneous fractional repetition (HFR) code, which is adaptable to the scenario where the repetition degrees of coded packets are different. We provide explicit code constructions by utilizing group divisible designs, which allow the design of HFR codes over a large range of parameters. The constructed codes achieve the system storage capacity under random access repair and have multiple repair alternatives for node failures. Further, we take advantage of the systematic feature of MDS codes and present a novel design framework of HFR codes, in which storage nodes can be wisely partitioned into clusters such that data reconstruction time can be reduced when contacting nodes in the same cluster.Comment: Accepted for publication in IET Communications, Jul. 201

    Repairable Replication-based Storage Systems Using Resolvable Designs

    Get PDF
    We consider the design of regenerating codes for distributed storage systems at the minimum bandwidth regeneration (MBR) point. The codes allow for a repair process that is exact and uncoded, but table-based. These codes were introduced in prior work and consist of an outer MDS code followed by an inner fractional repetition (FR) code where copies of the coded symbols are placed on the storage nodes. The main challenge in this domain is the design of the inner FR code. In our work, we consider generalizations of FR codes, by establishing their connection with a family of combinatorial structures known as resolvable designs. Our constructions based on affine geometries, Hadamard designs and mutually orthogonal Latin squares allow the design of systems where a new node can be exactly regenerated by downloading β1\beta \geq 1 packets from a subset of the surviving nodes (prior work only considered the case of β=1\beta = 1). Our techniques allow the design of systems over a large range of parameters. Specifically, the repetition degree of a symbol, which dictates the resilience of the system can be varied over a large range in a simple manner. Moreover, the actual table needed for the repair can also be implemented in a rather straightforward way. Furthermore, we answer an open question posed in prior work by demonstrating the existence of codes with parameters that are not covered by Steiner systems

    Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection

    Get PDF
    Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC
    corecore