12,712 research outputs found

    A hybrid prediction model for energy-efficient data collection in wireless sensor networks

    Get PDF
    Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Energy-efficient node selection algorithms with correlation optimization in wireless sensor networks

    Full text link
    The sensing data of nodes is generally correlated in dense wireless sensor networks, and the active node selection problem aims at selecting a minimum number of nodes to provide required data services within error threshold so as to efficiently extend the network lifetime. In this paper, we firstly propose a new Cover Sets Balance (CSB) algorithm to choose a set of active nodes with the partially ordered tuple (data coverage range, residual energy). Then, we introduce a new Correlated Node Set Computing (CNSC) algorithm to find the correlated node set for a given node. Finally, we propose a High Residual Energy First (HREF) node selection algorithm to further reduce the number of active nodes. Extensive experiments demonstrate that HREF significantly reduces the number of active nodes, and CSB and HREF effectively increase the lifetime of wireless sensor networks compared with related works.This work is supported by the National Science Foundation of China under Grand nos. 61370210 and 61103175, Fujian Provincial Natural Science Foundation of China under Grant nos. 2011J01345, 2013J01232, and 2013J01229, and the Development Foundation of Educational Committee of Fujian Province under Grand no. 2012JA12027. It has also been partially supported by the "Ministerio de Ciencia e Innovacion," through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental," Project TEC2011-27516, and by the Polytechnic University of Valencia, though the PAID-15-11 multidisciplinary Projects.Cheng, H.; Su, Z.; Zhang, D.; Lloret, J.; Yu, Z. (2014). Energy-efficient node selection algorithms with correlation optimization in wireless sensor networks. International Journal of Distributed Sensor Networks. 2014:1-14. https://doi.org/10.1155/2014/576573S1142014Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292-2330. doi:10.1016/j.comnet.2008.04.002Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Diallo, O., Rodrigues, J. J. P. C., Sene, M., & Lloret, J. (2015). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 26(2), 604-620. doi:10.1109/tpds.2013.207Oliveira, L. M. L., Rodrigues, J. J. P. C., Elias, A. G. F., & Zarpelão, B. B. (2014). Ubiquitous Monitoring Solution for Wireless Sensor Networks with Push Notifications and End-to-End Connectivity. Mobile Information Systems, 10(1), 19-35. doi:10.1155/2014/270568Diallo, O., Rodrigues, J. J. P. C., & Sene, M. (2012). Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1013-1021. doi:10.1016/j.jnca.2011.12.006Boyinbode, O., Le, H., & Takizawa, M. (2011). A survey on clustering algorithms for wireless sensor networks. International Journal of Space-Based and Situated Computing, 1(2/3), 130. doi:10.1504/ijssc.2011.040339Aslam, N., Phillips, W., Robertson, W., & Sivakumar, S. (2011). A multi-criterion optimization technique for energy efficient cluster formation in wireless sensor networks. Information Fusion, 12(3), 202-212. doi:10.1016/j.inffus.2009.12.005Karaboga, D., Okdem, S., & Ozturk, C. (2012). Cluster based wireless sensor network routing using artificial bee colony algorithm. Wireless Networks, 18(7), 847-860. doi:10.1007/s11276-012-0438-zNaeimi, S., Ghafghazi, H., Chow, C.-O., & Ishii, H. (2012). A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks. Sensors, 12(6), 7350-7409. doi:10.3390/s120607350Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Rajagopalan, R., & Varshney, P. (2006). Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys & Tutorials, 8(4), 48-63. doi:10.1109/comst.2006.283821Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in Wireless Sensor Networks: Optimal and heuristic algorithms. Computer Networks, 53(7), 945-960. doi:10.1016/j.comnet.2008.12.001Tan, H. O., Korpeoglu, I., & Stojmenovic, I. (2011). Computing Localized Power-Efficient Data Aggregation Trees for Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 22(3), 489-500. doi:10.1109/tpds.2010.68Gao, Q., Zuo, Y., Zhang, J., & Peng, X.-H. (2010). Improving Energy Efficiency in a Wireless Sensor Network by Combining Cooperative MIMO With Data Aggregation. IEEE Transactions on Vehicular Technology, 59(8), 3956-3965. doi:10.1109/tvt.2010.2063719Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793-802. doi:10.1016/j.comcom.2010.10.003Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. doi:10.1109/sahcn.2011.5984932Xu, Y., & Choi, J. (2012). Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields. Automatica, 48(8), 1735-1740. doi:10.1016/j.automatica.2012.05.029Min, J.-K., & Chung, C.-W. (2010). EDGES: Efficient data gathering in sensor networks using temporal and spatial correlations. Journal of Systems and Software, 83(2), 271-282. doi:10.1016/j.jss.2009.08.004Jianzhong Li, & Siyao Cheng. (2012). (ε, δ)-Approximate Aggregation Algorithms in Dynamic Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 385-396. doi:10.1109/tpds.2011.193Hung, C.-C., Peng, W.-C., & Lee, W.-C. (2012). Energy-Aware Set-Covering Approaches for Approximate Data Collection in Wireless Sensor Networks. IEEE Transactions on Knowledge and Data Engineering, 24(11), 1993-2007. doi:10.1109/tkde.2011.224Liu, C., Wu, K., & Pei, J. (2007). An Energy-Efficient Data Collection Framework for Wireless Sensor Networks by Exploiting Spatiotemporal Correlation. IEEE Transactions on Parallel and Distributed Systems, 18(7), 1010-1023. doi:10.1109/tpds.2007.1046Xiaobo Zhang, Heping Wang, Nait-Abdesselam, F., & Khokhar, A. A. (2009). Distortion Analysis for Real-Time Data Collection of Spatially Temporally Correlated Data Fields in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology, 58(3), 1583-1594. doi:10.1109/tvt.2008.928906Karasabun, E., Korpeoglu, I., & Aykanat, C. (2013). Active node determination for correlated data gathering in wireless sensor networks. Computer Networks, 57(5), 1124-1138. doi:10.1016/j.comnet.2012.11.018Gupta, H., Navda, V., Das, S., & Chowdhary, V. (2008). Efficient gathering of correlated data in sensor networks. ACM Transactions on Sensor Networks, 4(1), 1-31. doi:10.1145/1325651.1325655Campobello, G., Leonardi, A., & Palazzo, S. (2012). Improving Energy Saving and Reliability in Wireless Sensor Networks Using a Simple CRT-Based Packet-Forwarding Solution. IEEE/ACM Transactions on Networking, 20(1), 191-205. doi:10.1109/tnet.2011.2158442Tseng, L.-C., Chien, F.-T., Zhang, D., Chang, R. Y., Chung, W.-H., & Huang, C. (2013). Network Selection in Cognitive Heterogeneous Networks Using Stochastic Learning. IEEE Communications Letters, 17(12), 2304-2307. doi:10.1109/lcomm.2013.102113.131876Rodrigues, J. J. P. C., & Neves, P. A. C. S. (2010). A survey on IP-based wireless sensor network solutions. International Journal of Communication Systems, n/a-n/a. doi:10.1002/dac.1099Aziz, A. A., Sekercioglu, Y. A., Fitzpatrick, P., & Ivanovich, M. (2013). A Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery Powered Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 15(1), 121-144. doi:10.1109/surv.2012.031612.00124Mehlhorn, K. (1988). A faster approximation algorithm for the Steiner problem in graphs. Information Processing Letters, 27(3), 125-128. doi:10.1016/0020-0190(88)90066-xCheng, H., Liu, Q., & Jia, X. (2006). Heuristic algorithms for real-time data aggregation in wireless sensor networks. Proceeding of the 2006 international conference on Communications and mobile computing - IWCMC ’06. doi:10.1145/1143549.1143774Cheng, H., Guo, R., & Chen, Y. (2013). Node Selection Algorithms with Data Accuracy Guarantee in Service-Oriented Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(4), 527965. doi:10.1155/2013/52796

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    In-Network Distributed Solar Current Prediction

    Get PDF
    Long-term sensor network deployments demand careful power management. While managing power requires understanding the amount of energy harvestable from the local environment, current solar prediction methods rely only on recent local history, which makes them susceptible to high variability. In this paper, we present a model and algorithms for distributed solar current prediction, based on multiple linear regression to predict future solar current based on local, in-situ climatic and solar measurements. These algorithms leverage spatial information from neighbors and adapt to the changing local conditions not captured by global climatic information. We implement these algorithms on our Fleck platform and run a 7-week-long experiment validating our work. In analyzing our results from this experiment, we determined that computing our model requires an increased energy expenditure of 4.5mJ over simpler models (on the order of 10^{-7}% of the harvested energy) to gain a prediction improvement of 39.7%.Comment: 28 pages, accepted at TOSN and awaiting publicatio
    corecore