584 research outputs found

    DEMON: a Local-First Discovery Method for Overlapping Communities

    Full text link
    Community discovery in complex networks is an interesting problem with a number of applications, especially in the knowledge extraction task in social and information networks. However, many large networks often lack a particular community organization at a global level. In these cases, traditional graph partitioning algorithms fail to let the latent knowledge embedded in modular structure emerge, because they impose a top-down global view of a network. We propose here a simple local-first approach to community discovery, able to unveil the modular organization of real complex networks. This is achieved by democratically letting each node vote for the communities it sees surrounding it in its limited view of the global system, i.e. its ego neighborhood, using a label propagation algorithm; finally, the local communities are merged into a global collection. We tested this intuition against the state-of-the-art overlapping and non-overlapping community discovery methods, and found that our new method clearly outperforms the others in the quality of the obtained communities, evaluated by using the extracted communities to predict the metadata about the nodes of several real world networks. We also show how our method is deterministic, fully incremental, and has a limited time complexity, so that it can be used on web-scale real networks.Comment: 9 pages; Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, August 12-16, 201

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks

    Social Network Dynamics

    Get PDF
    This thesis focuses on the analysis of structural and topological network problems. In particular, in this work the privileged subjects of investigation will be both static and dynamic social networks. Nowadays, the constantly growing availability of Big Data describing human behaviors (i.e., the ones provided by online social networks, telco companies, insurances, airline companies. . . ) offers the chance to evaluate and validate, on large scale realities, the performances of algorithmic approaches and the soundness of sociological theories. In this scenario, exploiting data-driven methodologies enables for a more careful modeling and thorough understanding of observed phenomena. In the last decade, graph theory has lived a second youth: the scientific community has extensively adopted, and sharpened, its tools to shape the so called Network Science. Within this highly active field of research, it is recently emerged the need to extend classic network analytical methodologies in order to cope with a very important, previously underestimated, semantic information: time. Such awareness has been the linchpin for recent works that have started to redefine form scratch well known network problems in order to better understand the evolving nature of human interactions. Indeed, social networks are highly dynamic realities: nodes and edges appear and disappear as time goes by describing the natural lives of social ties: for this reason. it is mandatory to assess the impact that time-aware approaches have on the solution of network problems. Moving from the analysis of the strength of social ties, passing through node ranking and link prediction till reaching community discovery, this thesis aims to discuss data-driven methodologies specifically tailored to approach social network issues in semantic enriched scenarios. To this end, both static and dynamic analytical processes will be introduced and tested on real world data
    • …
    corecore