68,385 research outputs found

    Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction

    Full text link
    A method for concatenating quantum error-correcting codes is presented. The method is applicable to a wide class of quantum error-correcting codes known as Calderbank-Shor-Steane (CSS) codes. As a result, codes that achieve a high rate in the Shannon theoretic sense and that are decodable in polynomial time are presented. The rate is the highest among those known to be achievable by CSS codes. Moreover, the best known lower bound on the greatest minimum distance of codes constructible in polynomial time is improved for a wide range.Comment: 16 pages, 3 figures. Ver.4: Title changed. Ver.3: Due to a request of the AE of the journal, the present version has become a combination of (thoroughly revised) quant-ph/0610194 and the former quant-ph/0610195. Problem formulations of polynomial complexity are strictly followed. An erroneous instance of a lower bound on minimum distance was remove

    Polar Codes with exponentially small error at finite block length

    Get PDF
    We show that the entire class of polar codes (up to a natural necessary condition) converge to capacity at block lengths polynomial in the gap to capacity, while simultaneously achieving failure probabilities that are exponentially small in the block length (i.e., decoding fails with probability exp(NΩ(1))\exp(-N^{\Omega(1)}) for codes of length NN). Previously this combination was known only for one specific family within the class of polar codes, whereas we establish this whenever the polar code exhibits a condition necessary for any polarization. Our results adapt and strengthen a local analysis of polar codes due to the authors with Nakkiran and Rudra [Proc. STOC 2018]. Their analysis related the time-local behavior of a martingale to its global convergence, and this allowed them to prove that the broad class of polar codes converge to capacity at polynomial block lengths. Their analysis easily adapts to show exponentially small failure probabilities, provided the associated martingale, the ``Arikan martingale'', exhibits a corresponding strong local effect. The main contribution of this work is a much stronger local analysis of the Arikan martingale. This leads to the general result claimed above. In addition to our general result, we also show, for the first time, polar codes that achieve failure probability exp(Nβ)\exp(-N^{\beta}) for any β<1\beta < 1 while converging to capacity at block length polynomial in the gap to capacity. Finally we also show that the ``local'' approach can be combined with any analysis of failure probability of an arbitrary polar code to get essentially the same failure probability while achieving block length polynomial in the gap to capacity.Comment: 17 pages, Appeared in RANDOM'1

    On deep holes of generalized Reed-Solomon codes

    Full text link
    Determining deep holes is an important topic in decoding Reed-Solomon codes. In a previous paper [8], we showed that the received word uu is a deep hole of the standard Reed-Solomon codes [q1,k]q[q-1, k]_q if its Lagrange interpolation polynomial is the sum of monomial of degree q2q-2 and a polynomial of degree at most k1k-1. In this paper, we extend this result by giving a new class of deep holes of the generalized Reed-Solomon codes.Comment: 5 page

    Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes

    Full text link
    Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p^a,m) and generating sets for its ideals are considered. Along with some structure details of the ambient ring, the existance of a certain type of generating set for an ideal is proven.Comment: arXiv admin note: text overlap with arXiv:0906.400

    On the Construction of Prefix-Free and Fix-Free Codes with Specified Codeword Compositions

    Get PDF
    We investigate the construction of prefix-free and fix-free codes with specified codeword compositions. We present a polynomial time algorithm which constructs a fix-free code with the same codeword compositions as a given code for a special class of codes called distinct codes. We consider the construction of optimal fix-free codes which minimizes the average codeword cost for general letter costs with uniform distribution of the codewords and present an approximation algorithm to find a near optimal fix-free code with a given constant cost
    corecore