435 research outputs found

    Performance Analysis of MIMO-STBC Systems with Higher Coding Rate Using Adaptive Semiblind Channel Estimation Scheme

    Get PDF
    Semiblind channel estimation method provides the best trade-off in terms of bandwidth overhead, computational complexity and latency. The result after using multiple input multiple output (MIMO) systems shows higher data rate and longer transmit range without any requirement for additional bandwidth or transmit power. This paper presents the detailed analysis of diversity coding techniques using MIMO antenna systems. Different space time block codes (STBCs) schemes have been explored and analyzed with the proposed higher code rate. STBCs with higher code rates have been simulated for different modulation schemes using MATLAB environment and the simulated results have been compared in the semiblind environment which shows the improvement even in highly correlated antenna arrays and is found very close to the condition when channel state information (CSI) is known to the channel

    Quantum Computing: Pro and Con

    Get PDF
    I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared for a panel discussion at the ITP Conference on Quantum Coherence and Decoherence, 17 December 1996.)Comment: 17 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor correction

    Experimental Demonstration of Spectrally Efficient Frequency Division Multiplexing Transmissions at E-Band

    Get PDF
    This paper presents the design and the experimental demonstration of transmission of spectrally efficient frequency division multiplexing (SEFDM) signals, using a single 5-GHz channel, from 81 to 86 CHz in the E-hand frequency allocation. A purpose-built E-band SEFDM experimental demonstrator, consisting of transmitter and receiver GaAs microwave integrated circuits, along with a complete chain of digital signal processing is explained. Solutions are proposed to solve the channel and phase offset estimation and equalization issues, which arise from the well-known intercarrier interference between the SEFDM signal subcarriers. This paper shows the highest transmission rate of 12 Gb/s over a bandwidth varying between 2.67 to 4 CHz depending on the compression level of the SEFDM signals, which results in a spectral efficiency improvement by up to 50%, compared to the conventional orthogonal frequency division multiplexing modulation format

    Optical Quantum Computation

    Full text link
    We review the field of Optical Quantum Computation, considering the various implementations that have been proposed and the experimental progress that has been made toward realizing them. We examine both linear and nonlinear approaches and both particle and field encodings. In particular we discuss the prospects for large scale optical quantum computing in terms of the most promising physical architectures and the technical requirements for realizing them

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes

    Blind Channel Estimation for STBC Systems Using Higher-Order Statistics

    No full text
    International audienceThis paper describes a new blind channel estimation algorithm for Space-Time Block Coded (STBC) systems. The proposed method exploits the statistical independence of sources before space-time encoding. The channel matrix is estimated by minimizing a kurtosis-based cost function after Zero-Forcing equalization. In contrast to subspace or Second-Order Statistics (SOS) approaches, the proposed method is more general since it can be employed for the general class of linear STBCs including Spatial Multiplexing, Orthogonal, quasi-Orthogonal and Non-Orthogonal STBCs. Furthermore, unlike other approaches, the method does not require any modification of the transmitter and, consequently, is well-suited for non-cooperative context. Numerical examples corroborate the performance of the proposed algorithm
    • …
    corecore