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partially solved issues in STC. In this thesis, I propose a new STC design from

cyclic design. I then propose a systematic method to design quasi-orthogonal
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Space Time Coding in MIMO Systems

1. INTRODUCTION

1.1. Background and Motivation

MIMO systems use multiple transmit and receive antennas to create mul-

tiple spatial channels between the transmitter and the receiver. MIMO systems

have been shown to provide high spectral efficiencies [1–34], which form the basis

to increase the data rates without increasing the bandwidth. If perfect channel

state information (CSI) is available at the receiver, the average capacity grows

linearly with the smaller of the numbers of transmit and receive antennas under

certain channel conditions. The major potential advantage of MIMO is that either

the quality in terms of bit error rate (BER) or the data rate of the system can

be improved. The performance improvement of MIMO systems can be assessed

by using diversity gain and spatial multiplexing gain. It is not possible to achieve

maximum diversity and multiplexing simultaneously because there is a tradeoff

between them [35]. Diversity gain is achieved by transmitting the same signal over

multiple independent fading environments, e.g., in the time, frequency, and spatial

domains. Space-time coding transmits signal across the spatial and time domains

simultaneously in order to achieve diversity gain without increasing bandwidth.

In [36], Alamouti proposed an OSTBC for systems with two transmit an-

tennas. Later, orthogonal design was extended to the systems with arbitrary

number of transmit antennas in [37–39]. The most important aspect of orthog-

onal design is its full diversity and low-complexity maximum likelihood (ML)
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decoding. These properties make OSTBC be an attractive transmission scheme

in practical systems. Space time trellis coding (STTC) [40] is another space time

coding scheme which combines trellis code with space time coding in order to

achieve both diversity gain and coding gain [40]; however, encoding and decoding

complexities of STTC are higher than those of OSTBC.

Spatial multiplexing gain could be evaluated by using the linear increase in

capacity without additional bandwidth resources. This gain is realized by trans-

mitting independent data streams from individual antennas to maximize data

rates. Vertical Bell Labs layered Space-Time (V-BLAST) proposed in [41, 42]

is an effective approach to achieve spatial multiplexing gain. V-BLAST is also

directly called spatial multiplexing (SM). By using channel coding, interleaving,

and mapping, information bits can also be transmitted across time and space do-

mains. Therefore, V-BLAST can be considered a type of space time coding. The

interference among the signals transmitted simultaneously from different transmit

antennas considerably increases the detection complexity. The optimal detection

scheme is the ML scheme where the receiver compares all possible combinations

of the transmitted symbols with the observed ones. It suffers from significant

increase in complexity, which grows exponentially with the number of transmit

antennas and the size of signal constellation. It could become prohibitive with a

large number of antennas and high-order modulations. Thus, several suboptimal

detection schemes have been developed, e.g. zero-forcing (ZF), minimum-mean-

square error (MMSE) and V-BLAST, at this time, V-BLAST stands for a nulling

and cancelling detection scheme instead of a transmission scheme. Both ZF and

MMSE can decouple different spatial streams by matrix inversion. ZF results in

poor performance without considering the noise enhancement. MMSE has a bet-

ter performance than ZF by considering the tradeoff between noise enhancement
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and interference suppression. V-BLAST decodes the symbol with the highest

signal-to-noise ratio (SNR) first based on ZF or MMSE criterion, and then can-

cels the contribution of the decoded symbol from the received signals assuming

the decoding result is correct. Such process continues by decodes the symbol with

the second highest SNR, and so on. Note that ZF and MMSE require that the

number of receive antennas be greater than or be equal to the number of transmit

antennas; however, ML does not have such constraint.

1.2. Objective and Contributions

Space-time block codes have lower encoding and decoding complexities

than Space-time trellis codes. Therefore, space-time block codes are more popular

in practical systems. In this thesis, we will focus on space-time block coding.

It has been proved that rate-one orthogonal space time block code for

complexity signals exists only for two transmit antennas [37, 43–45]. When the

number of transmit antennas is larger than two, quasi-orthogonal space-time block

code [46, 47] is a good choice as it can provide full transmission rate, and full

diversity can be achieved by constellation rotation [48, 49]. However, rotated

QOSTBC experiences constellation expansion. In chapter 2, we propose space-

time block codes from cyclic design for three and four transmit antennas for which

full diversity can be achieved for real signals, i.e., pulse amplitude modulation

(PAM) and complex QPSK signal. There is no constellation expansion for STBC

from cyclic design.

Optimal rotation angles in the sense of maximizing coding gain [40] for

QOSTBC with four antennas have been derived analytically for quadrature am-

plitude modulation (QAM) and triangular modulation (TRI) [49]. Phase shift
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keying (PSK) is another popular modulation scheme, but the non-integer in-phase

and quadrature components make it difficult to be find the optimal rotation angle

via an analytical approach. We propose a geometrical method [51] in Chapter

3 to find the optimal rotation angle for PSK signals based on their geometrical

properties. We also prove that even-sized PSK signal has larger coding gain than

odd-sized PSK signal.

Extensive amount of research has been done for rotated QOSTBC with

four transmit antennas. When the number of antennas is greater than four, it is

extremely difficult to design QOSTBC and derive the optimal rotation angles. In

[52], Sharma and Papadias tried to find rotation angles for QOSTBC with a large

number of transmit antennas; however, these results are not optimal in the sense

of maximizing the coding gain. In Chapter 4, we develop a systematic method to

design QOSTBC based on rate-one, real OSTBC [53]. We also find the optimal

rotation angles by minimizing the number of unknown variables. A geometric

method is used to find the optimal angle for QPSK; for the constellations with a

larger size than QPSK, optimal rotation angles are found via computer search.

Performance analysis is a powerful tool to predict and analyze the perfor-

mance of space time codes. Existing analysis on the error performance of STBC

has focused on deriving error-rate upper bounds for a general system [40, 54–56]

or the exact error probabilities for some special cases [59]. A general method to

calculate the exact error probability for orthogonal space-time block codes that

employ coherent and differential PSK over flat Rayleigh fading channels is pro-

posed in Chapter 5 [60].

Receive diversity yields a higher SNR than transmit diversity when the

total transmitted power and diversity order are the same. However, if the trans-

mitter has complete or partial knowledge of the channel, the SNR gap between
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these two schemes can be reduced. We propose an adaptive power allocation

scheme for STBC to improve system performance [61] in Chapter 6. The pro-

posed adaptive power allocation scheme improves the instantaneous SNR at the

receiver. The maximum achievable SNR gain limit over the conventional scheme

is also derived.

Existing space-time codes have focused on linear modulations such as QAM

and PSK. Continuous phase modulation (CPM) is an attractive scheme for digi-

tal transmission because of its compact spectrum and constant envelope which is

needed for power efficient transmitters. Recent research has shown that space-time

coded CPM can achieve transmit diversity to improve performance while main-

taining the compact spectrum of CPM signals. However, these efforts mainly

combine STTC with CPM to achieve spatial diversity at the cost of a high decod-

ing complexity. In Chapter 7, we design STBC for binary CPM with a modulation

index 1/2 [62] and develop low complexity receivers. The proposed scheme has a

much lower decoding complexity than STTC CPM.

QOSTBC has a higher decoding complexity than OSTBC but lower decod-

ing complexity than spatial multiplexing. QOSTBC for four transmit antennas

can be decoded pair by pair, instead of four transmitted symbols jointly. The

complexity of QOSTBC is comparable to that of SM in systems with two trans-

mit antennas. In Chapter 8, we propose a group decoding scheme to further

reduce the complexity of QOSTBC while still approach the performance of the

ML decoder.

1.3. Notation Summary

Acronyms and mathematical notations are listed below.
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Notation Description

(·)T Transpose

(·)H Hermitian

(·)∗ Complex Conjugate

‖ · ‖F Frobenius Norm

BCPM0.5 Binary Continuous Phase Modulation with h = 1/2

BER Bit Error Rate

BT Bandwidth Time Product

CDF Cumulative Distribution Function

CPM Continuous Phase Modulation

GMSK Gaussian Minimum Shift Keying

GSM Global System for Mobile communications

ISI Intersymbol Interference

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

NRZ Non Return to Zero

OSTBC Orthogonal Space Time Block Codes

PAM Pulse Amplitude Modulation

PDF Probability Density Function

PSD Power Spectrum Density

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QOSTBC Quasi-Orthogonal Space Time Block Codes

SINR Signal-to-Interference plus Noise Ratio

SM Spatial Multiplexing
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SNR Signal-to-Noise Ratio

STBC Space-Time Block Codes

STTC Space-Time Trellis Codes

V-BLAST Vertical Bell Labs Layered Space-Time

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

ZF Zero Forcing
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2. SPACE-TIME BLOCK CODES FROM CYCLIC DESIGN

Linear orthogonal space-time block codes are attractive because of their

inter-symbol interference (ISI) free structure and the feasibility of realizing maxi-

mum likelihood decoding using linear operations. However, in [37] Tarokh et. al.

proved that full-rate complex orthogonal codes do not exist for systems with more

than two transmit antennas. Thus the Alamouti scheme [36] is the only complex

orthogonal code with full transmission rates. In order to achieve full transmission

rate in systems with more than two transmit antennas, one must give up orthog-

onality. Therefore, in [46], Jafarkhani proposed a quasi-orthogonal code with full

rate but partial diversity for systems with four transmit antennas. In [48] Sharma

et. al. proposed a constellation-rotation scheme to improve the performance of

quasi-orthogonal codes, which was subsequently extended for systems with an ar-

bitrary number of transmit antennas in [52]. Later, He et. al. [63] proposed a

nonlinear orthogonal code with full rate and full diversity for QPSK systems with

four transmit antennas. However, the encoding and decoding complexities of this

code are higher than those of quasi-orthogonal codes.

In this Chapter, we present a new space-time block coding scheme based

on cyclic design. We will first analyze the determinants of real square orthogonal

code matrices and propose a new real code from cyclic design. Then, we minimize

ISI to design complex cyclic codes that achieve full diversity. We also study the

performance of the proposed scheme and compare it with existing schemes.

2.1. System Model

Consider a system with N transmit antennas and M receive antennas. The

transmission matrix is defined as
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G(x) =




c1
1 c2

1 · · · cN
1

c1
2 c2

2 · · · cN
2

...
...

. . .
...

c1
L c2

L · · · cN
L




(2.1)

where c = c1
1c

2
1 · · · cN

1 c1
2c

2
2 · · · cN

2 · · · is a codeword, cn
t is a combination of input

constellation symbols {x1, · · · , xP}, and L is the frame length. At each time

slot t, signals cn
t , n = 1, 2, · · · , N, t = 1, 2, · · · , L, are transmitted simultaneously

from the N transmit antennas. The transmission rate is defined as R = P/L

(R = 1 represents full rate).

The channel is assumed to be frequency nonselective Rayleigh, and is

modeled as quasi-static, allowing fading coefficients to be constant over a block

of data and changes independently from one block to another. Let hn,m, n =

1, · · · , N, m = 1, · · · ,M , be the path gain from transmit antenna n to receive

antenna m. The path gains are modeled as samples of independent zero-mean

complex Gaussian random variables with variance 0.5 per real dimension.

At time t, the signal received at antenna m, rm
t , is given by

rm
t =

N∑
n=1

√
Es

N
hn,mcn

t + ηm
t (2.2)

where Es is the average energy per symbol and 1/N is the power scaling factor for

each transmit antenna so that the total transmission power is normalized. The

received noise components ηm
t ,m = 1, · · · ,M , are independent samples of zero-

mean complex Gaussian random variables with variance N0/2 per real dimension.

Assuming the availability of perfect channel state information, the maximum like-

lihood receiver computes the following decision metric
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d =
L∑

t=1

M∑
m=1

∣∣∣∣∣r
m
t −

N∑
n=1

√
Es

N
hn,mĉn

t

∣∣∣∣∣

2

=
M∑

m=1

(
rH

m −
√

Es

N
hH

mGH(ĉ)

)(
rm −

√
Es

N
G(ĉ)hm

)

=
M∑

m=1

(
rH

mrm −
√

Es

N
hH

mGH(ĉ)rm −
√

Es

N
rH

mG(ĉ)hm

+
Es

N
hH

mGH(ĉ)G(ĉ)hm

)
(2.3)

where (·)H denotes complex conjugate transpose, rm = [rm
1 rm

2 · · · rm
L ]T , hm =

[h1,m h2,m · · · hN,m]T , and (·)T denotes transpose. After comparing over all pos-

sible codewords, the receiver decides in favor of the codeword that minimizes d

given in Eq. (2.3).

2.2. New Codes From Cyclic Design

Cyclic codes are easy to design across time and space domains. Because

of a lack of orthogonality, interference will degrade their performance. For this

reason, cyclic codes are much less attractive than orthogonal codes from Hurwitz-

Radon family [37] for real symbols. For full-rate complex code design, however,

cyclic codes could be very attractive because inter symbol interference in these

codes may not cause a loss in diversity under some conditions, and full diversity

can be achieved without constellation rotation.

2.2.1. The rank criterion

Let us review the rank criterion given in [37, 40]. Let an input

symbol vector be y =

[
y1 y2 · · · yP

]T

, which generates codeword e =



11

e1
1 · · · eN

1 e1
2 · · · eN

2 · · · e1
L · · · eN

L . In order to achieve the maximum diversity of or-

der NM , the difference matrix between the two code matrices corresponding to

distinct input symbol vector x and y

B(e, c) =




e1
1 − c1

1 e2
1 − c2

1 · · · eN
1 − cN

1

e1
2 − c1

2 e2
2 − c2

2 · · · eN
2 − cN

2

...
...

. . .
...

e1
L − c1

L e2
L − c2

L · · · eN
L − cN

L




must be of full rank. If B(e, c) has a minimum rank r over the set of pairs of

distinct codewords, then a diversity order of rM is achieved.

2.2.2. The determinant criterion

The determinant criterion for linear space-time codes to achieve full diversity in

Rayleigh fading environments: If a square code matrix G(x) is chosen to be such

that det (G(x)) 6= 0 for an arbitrary non-zero input vector x (the elements of x are

not necessary to be constellation symbols), then the code achieves full diversity.

Proof: because of linearity, we have B(e, c) = G(y)− G(x) = G(y − x),

and y 6= x ⇒ det(G(y − x)) 6= 0, therefore B(e, c) is a full-rank matrix for any

pair of distinct codewords c and e.

A non-zero determinant is a stronger condition than the full-rank criterion

for achieving full diversity. It will be interesting to analyze the determinant of the

linear square orthogonal transmission matrices given in [36] and [37]:
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G2 =




x1 x2

−x∗2 x∗1


 , G4 =




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1




,

G8 =




x1 x2 x3 x4 x5 x6 x7 x8

−x2 x1 x4 −x3 x6 −x5 −x8 x7

−x3 −x4 x1 x2 x7 x8 −x5 −x6

−x4 x3 −x2 x1 x8 −x7 x6 −x5

−x5 −x6 −x7 −x8 x1 x2 x3 x4

−x6 x5 −x8 x7 −x2 x1 −x4 x3

−x7 x8 x5 −x6 −x3 x4 x1 −x2

−x8 −x7 x6 x5 −x4 −x3 x2 x1




.

Note that G2 is a complex code whereas G4 and G8 are real codes. The determinants

of G2, G4, and G8 can be determined to be det(G2) = |x1|2 + |x2|2, det(G4) =

(
∑4

i=1 x2
i )

2, and det(G8) = (
∑8

i=1 x2
i )

4. Obviously, all three codes achieve full

diversity.

2.2.3. New full-rate full-diversity codes from cyclic design

Based on the determinant criterion, we can design the following linear real

cyclic code

H4 =




x1 x2 x3 x4

x4 x1 x2 −x3

−x3 −x4 x1 x2

−x2 x3 x4 x1
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whose determinant is obtained to be det(H4) = (x2
1 +x2

3)
2 +(x2

2 +x2
4)

2. Thus, this

code achieves full diversity for real symbols. From Eq. (2.3), it is easy to recognize

that the non-zero off-diagonal elements in GHG represent the ISI terms. It should

be mentioned that for the nonlinear codes proposed in [63], the diagonal elements,

as will be shown later in this section, may cause ISI. Eq. (2.3) also explains why

existing linear orthogonal codes are ISI free. Although the two codes H4 and

G4 have the same diversity order, H4 has a lower signal-to-interference-plus-noise

ratio (SINR) than G4 because of the ISI terms.

To design complex cyclic codes, we minimize ISI based on the structure

of H4. Equivalently, we must maximize the number of columns that are pairwise

orthogonal in the code matrix. Based on this design goal, a complex cyclic code

for 4 transmit antennas is obtained as

T4 =




x1 x2 x∗3 x∗4

x4 x1 x∗2 −x∗3

−x3 −x4 x∗1 x∗2

−x2 x3 x∗4 x∗1




. (2.4)

in matrix T4, the 1st column is orthogonal to the 3rd column, and the 2nd column

is orthogonal to the 4th column. This code satisfies the rank criterion and provides

full diversity for QPSK signals.

Let us compare the code from cyclic design given in (2.4) with the quasi-

orthogonal code given in [46]

A4 =




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

−x∗3 −x∗4 x∗1 x∗2

x4 −x3 −x2 x1




.
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It follows easily that

T H
4 T4 =




a b1 0 b2

b∗1 a −b2 0

0 −b∗2 a b∗1

b∗2 0 b1 a




(2.5)

and

AH
4 A4 =




a 0 0 b3

0 a −b3 0

0 −b∗3 a 0

b∗3 0 0 a




(2.6)

where a = |x1|2 + |x2|2 + |x3|2 + |x4|2, b1 = x∗1x2 + x1x
∗
4 + x∗3x4 − x∗2x3, b2 =

x∗1x
∗
4−x∗3x

∗
4−x∗2x

∗
3−x∗1x

∗
2, b3 = x∗1x4 +x1x

∗
4−x2x

∗
3−x∗2x3. Terms b1 and b2 are the

ISI terms for the proposed code from cyclic design, and b3 is the ISI term for the

quasi-orthogonal code. For QPSK symbols, b1 and b2 do not cause a loss in the di-

versity of the proposed cyclic code, but b3 reduces the diversity order of the quasi-

orthogonal code. Note that b3 can be expressed as b3 = f(x1, x4) + f(x2, x3), a

sum of two independent functions. Therefore, we can decode (x1, x4) and (x2, x3)

independently for the quasi-orthogonal code without degrading performance. For

the cyclic code, however, the decoding complexity cannot be reduced even though

there is no ISI between x1 and x3 or between x2 and x4.

2.3. Numerical Results and Discussion

In this section, we simulate the performance of the proposed cyclic code,

and compare it with that of the quasi-orthogonal code and the nonlinear code given
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in [63]. The nonlinear orthogonal code also provides full rate and full diversity for

QPSK signals. Its code matrix is given as

O4 =




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

−z∗1 z2 x∗1 −x2

−z∗2 −z1 x∗2 x1




where z1 = Re{x3}+ jIm{2x1x2x
∗
4} and z2 = x∗21 x4 +x2

2x
∗
4 +x∗1x2x3−x∗1x2x

∗
3. The

orthogonality of O4 is achieved by introducing nonlinearity. As a result, the di-

agonal elements of OH
4 O4 cause ISI. The nonlinear code requires the constellation

to be (1/
√

2 )ej(π
4
+k π

2
), k = 0, · · · , 3. This is because with this particular choice of

the constellation, y1 and y2, although a function of x1, · · · , x4, still belong to the

same constellation. Thus, the constellation is not be expanded.
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Rotated quasi−orth code

FIGURE 2.1. Error performance of cyclic code (N = 3,M = 1, QPSK)
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Fig. 2.1 shows the error performance curves the proposed code, the quasi-

orthogonal code, and the quasi-orthogonal code with optimal constellation rota-

tion (optimal angle is π/6, see [48]) for a QPSK system with 3 transmit antennas

and 1 receive antenna operating at 2 bits/s/Hz. Code matrices for the quasi-

orthogonal design and for the cyclic design are chosen as, respectively, the first 3

columns of A4 and the first 3 columns of T4. Error performance results of various

codes including the nonlinear code proposed in [63] for a QPSK system with 4

transmit antennas and 1 receive antenna operating at 2 bits/s/Hz are shown in

Fig. 2.2.

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Quasi−orthogonal code (M=1)
Cyclic code (M=1)
Rotated quasi−orthogonal code (M=1)
Nonlinear code (M=1)
Quasi−orthogonal code (M=2)
Cyclic code (M=2)
Rotated quasi−orthogonal code (M=2)
Nonlinear code (M=2)

FIGURE 2.2. Error performance of cyclic code (N = 4, M = 1, 2, QPSK)

It is observed from Figs. 2.1 and 2.2 that the slopes of SNR versus bit-

error-rate curves of the proposed cyclic code and the quasi-orthogonal code with

optimal constellation rotation are the same. Therefore, both codes achieve the

same diversity order. The quasi-orthogonal code without rotation is found to
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provide only partial diversity. The cyclic code always provides better performance

than the nonlinear code. In the low SNR region, quasi-orthogonal codes (with

or without constellation rotation) perform slightly better than the cyclic code

because quasi-orthogonal codes have less ISI (see Eqs. (2.5 and 2.6)). At high

SNR values, the cyclic code outperforms the unrotated quasi-orthogonal code. It

is also observed that the three types of codes with full diversity have comparable

performance when there are two receive antennas.

2.4. Conclusion

We proposed a cyclic coding scheme for QPSK systems with three or four

transmit antennas. The proposed codes achieve full rate and full diversity without

requiring constellation rotation. Compared with the nonlinear code, the proposed

cyclic code has a lower encoding complexity (decoding complexity is the same)

and always performs better. The proposed code construction method could be

applied to design rate-one, full-diversity, complex cyclic codes for systems with an

arbitrary number of transmit antennas.
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3. OPTIMAL ROTATION ANGLES FOR QUASI-ORTHOGONAL
SPACE-TIME CODES WITH PSK MODULATION

To achieve full diversity for quasi-orthogonal codes, constellation rotation

schemes were proposed in [48, 49]. Optimal rotation angles in the sense of maxi-

mizing coding gain for quadrature amplitude modulation (QAM) were addressed

in [49]. In [64], optimal rotation angles for PSK with an even constellation size

were derived. In this chapter, we derive, through a geometry-based approach,

the optimal rotation angles for quasi-orthogonal codes with any PSK modulation.

The independent work [65] also addressed the optimal rotation angles using a

completely different approach. In addition to the optimal rotation angles, We

also prove that coding gain for even-sized constellations is higher than that for

odd-sized constellations, which was observed but not proved in [65].

3.1. Optimal constellation rotation for PSK

We focus on the scheme given in [47] for systems with four transmit an-

tennas for which the code matrix is expressed as

C =




x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3

x3 x4 x1 x2

−x∗4 x∗3 −x∗2 x∗1




, and CHC =




a 0 b 0

0 a 0 b

b 0 a 0

0 b 0 a




, where (·)∗ denotes

complex conjugate, (·)H denotes conjugate transpose, a =
∑4

i=1 |xi|2, and b =

x1x
∗
3 + x3x

∗
1 + x2x

∗
4 + x4x

∗
2. Analysis for other quasi-orthogonal codes (e.g., the

code given in [46]) is similar.

The maximum likelihood decision metric for this code can be written as

the sum of two independent terms f1(x1, x3) + f2(x2, x4). Thus, the minimization
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for ML decoding can be done separately on these two terms. For the code example

chosen above, let us consider (x1, x3) and let x2 = x4 = 0 [48] in calculating the

optimal rotation angles.

Let A be a PSK constellation of size Q, where Q could be even (Q = 2n,

n>0 is an integer) or odd (Q=2n−1, n>1), and B be the rotated constellation

of A expressed as B = ejφA, where φ represents the rotation angle. Also let

x1, x̃1 ∈ A and x3, x̃3 ∈ B, where (x1, x3) 6= (x̃1, x̃3). Maximizing coding gain

is equivalent to maximizing |det[∆H
C(x1,0,x3,0)∆C(x1,0,x3,0)]|, where | · | denotes the

absolute value and ∆C(x1,0,x3,0) is the difference matrix given as ∆C(x1,0,x3,0) =

C(x1,0,x3,0) − C(x̃1,0,x̃3,0). This is also equivalent to maximizing the minimum ζ-

distance between constellations A and B expressed as Eq. (23) in [49]

dmin,ζ(A,B) , min︸︷︷︸
(x1,x3)6=(x̃1,x̃3)

∣∣(x1 − x̃1)
2 − (x3 − x̃3)

2
∣∣ 1

2 . (3.1)

the set of values of (x1 − x̃1)
2 with x1, x̃1 ∈ A and (x3 − x̃3)

2 with x3, x̃3 ∈ B
constitute, respectively, constellation X and constellation Y = ej2φX . Note that

both X and Y include the origin. The optimal rotation angle in the sense of

maximizing coding gain must maximize the minimum distance between any point

from X and any point from Y , except the origin.

Before calculating the optimal rotation angles, let us examine the proper-

ties of X . Examples of an even-sized constellation A (16PSK) and an odd-sized

constellation A (7PSK) are shown in Fig. 3.1 and Fig. 3.2, respectively.

The corresponding new constellations X formed by the set of values of

(x1 − x̃1)
2 with x1, x̃1 ∈ A are shown in Fig. 3.3 and Fig. 3.4, respectively.

In the following discussion, we exclude the origin in X because if x1 − x̃1 = 0

or x3 − x̃3 = 0, |(x1 − x̃1)
2 − (x3 − x̃3)

2|1/2
becomes a constant for any rotation
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FIGURE 3.1. An example of an even-sized constellation A: 16PSK.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

p1 

p2 

p3 

p4 

p5 

p6 

p7 

FIGURE 3.2. An example of an odd-sized constellation A: 7PSK.

angle. Let P = Q/2 when Q is an even number and P = (Q − 1)/2 when Q
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FIGURE 3.3. Constellation X formed by (x1 − x̃1)
2, where x1, x̃1 ∈ A as shown

in Fig. 3.1
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FIGURE 3.4. Constellation X formed by (x1 − x̃1)
2, where x1, x̃1 ∈ A as shown

in Fig. 3.2

.
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(Q ≥ 3) is an odd number. In the following proofs, we focus on the case when Q

is an even number. The proof when Q is an odd number is similar.

Properties of X :

1. All points in X can be divided into P groups, S1, S2, · · · , SP , based on their

relative magnitudes in ascending order as |S1| < |S2| < · · · < |SP |.

Proof: It is easy to see from Fig. 3.1 that for all possible combinations of

x1, x̃1 ∈ A and x1 6= x̃1, |x1 − x̃1| has Q/2 distinct values. Additionally,

the group with the minimum magnitude is formed by two adjacent points

in A such as x1 = p1 and x̃1 = p2. The minimum magnitude is thus

obtained to be |S1| = |p2 − p1|2 = 2 − 2 cos (2π/Q). Obviously, we have

dmin,ζ(A,B) ≤ |S1|1/2.

2. The distance between any two points from two different groups is greater

than or equal to |S1| when Q is an even number and greater than |S1| when

Q is an odd number.

Proof: Consider the worst case where two points from two adjacent groups

have the same phase. The distance between these two points is |Si|− |Si−1|.
From Fig. 3.1, it is easy to see that sides

√
|S1|,

√
|Si−1|, and

√
|Si| always

constitute a triangle. Additionally, the angle opposite
√
|Si| is an obtuse

angle or right angle (e.g., ∠p1p7p8 is an obtuse angle and ∠p1p8p9 is a right

angle). Thus, we have |Si| − |Si−1| ≥ |S1| with equality if and only if the

triangle is a right triangle.

For the example shown in Fig. 3.3, the distance between the two outer

circles equals the radius of the inner circle.
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3. There are exactly Q/2 (Q = 2n) or Q (Q = 2n− 1) different points in each

of the P groups, S1, S2, · · · , SP , and the phases of all points in any group

are uniformly distributed between 0 and 2π.

Proof: We prove using group S1 as an example. The same method applies

to other groups. All points in S1 are listed as

(p2 − p1)
2 = ejπ(e−j2π/Q − 1)2

...

(pQ − pQ−1)
2 = e−j4π(Q−2)/Q · ejπ(e−j2π/Q − 1)2

(p1 − pQ)2 = e−j4π(Q−1)/Q · ejπ(e−j2π/Q − 1)2.

It is found that the phase difference between any two adjacent points in S1

is 4π/Q when Q is an even number, and is 2π/Q when Q is an odd number.

3.1.1. The optimal rotation angles

According to properties 1-3 of constellation X , the optimal rotation an-

gle for quasi-orthogonal codes with PSK modulation is π/Q when Q is even and

π/(2Q) when Q is odd.

Proof: If we let φ = π/Q, constellation Y is related to constellation X
as Y = ej2φX = ej2π/QX . According to property 3 of X , the minimum dis-

tance between any two points s ∈ Si and s̃ ∈ ej2π/QSi is maximized. Ad-

ditionally, from property 2 of X , the minimum distance between α ∈ Si and

β ∈ ej2π/QSj, i 6= j, is always greater than or equal to |S1|. Therefore, the mini-

mum ζ-distance is determined by |S1|, and φ = π/Q is the optimal rotation angle

that maximizes dmin,ζ(A,B) when Q is even. Following a similar procedure, we
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can prove the conclusion for odd-sized constellations. Note that rotation with

φ = π/Q odd-sized constellations does not even provide full diversity ( [66], The-

orem 2.2). This is clear from Fig. 3.4: if Y = ej2π/QX , then Y and X overlap and

|(x1 − x̃1)
2 − (x3 − x̃3)

2| 12 could be zero.

The corresponding optimal minimum ζ-distance is

dmin,ζ(A,B) =



min

(∣∣∣2|S1|2(1− cos (2π
Q

))
∣∣∣

1
4
, |S1| 12

)
, Q = 2n

min

(∣∣∣2|S1|2(1− cos ( π
Q

))
∣∣∣

1
4
, |S1| 12

)
, Q = 2n−1

the above expression can be simplified as

dmin,ζ(A,B)=





2 sin
(

π
Q

)
, Q = 2, 4√

8 sin3
(

π
Q

)
, Q=2n≥6

√
8 sin

(
π

2Q

)
sin2

(
π
Q

)
, Q=2n−1

(3.2)

for the specific case of 8PSK (Q = 8), the optimal rotation angle based on the

conclusion in this letter is φ = π/8 and the minimum ζ-distance is 0.6696, which

are the same as the results obtained via computer search in [49].

3.1.2. Relative coding gain between Q=2n and Q=2n−1

Proposition 1: The cases of Q = 2n, n≥ 3, have larger optimal minimum

ζ-distances than those of Q = 2n− 1. Mathematically, Proposition 1 is expressed

as

sin3
( π

2n

)
− sin

(
π

2(2n− 1)

)
sin2

(
π

2n− 1

)
> 0. (3.3)

Before proving Proposition 1, let us prove the following inequality:
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x > sin(x) > x− x3/6, for x > 0. (3.4)

Let f1(x) = x−sin(x) and f2(x) = sin(x)−x+x3/6. Obviously, f1(x)|x=0 =

0 and f ′1(x) ≥ 0, ∀x > 0, where (·)′ denotes derivative. Thus, the left inequality

of (3.4) follows. The derivative of f2(x) with respect to x is written as

f ′2(x) = cos(x)− 1 +
x2

2

= 2

[(x

2

)2

− sin2
(x

2

)]
> 0. (3.5)

Thus, the right inequality of (3.4) follows.

Let ξ1 =
[

π
2n
− (π/(2n))3

6

]3

and ξ2 = π
2(2n−1)

(
π

2n−1

)2
. For n ≥ 3

ξ1 − ξ2 = (n + 0.92)(n− 0.36)(n− 2.98) > 0.

Notice that from (3.4) we have

ξ1 < sin3
( π

2n

)

ξ2 > sin

(
π

2(2n− 1)

)
sin2

(
π

2n− 1

)
.

Thus, Proposition 1 expressed in (3.3) is proved.

3.2. Conclusion

We have derived, using a geometry-based method, the optimal constella-

tion rotation angles for quasi-orthogonal space-time block codes for four-antenna

systems with PSK modulation. Through constellation rotation with these rota-

tion angles, the coding gain is maximized and full diversity of quasi-orthogonal

codes is achieved. We have also proved that PSK signals with a constellation size

Q = 2n have larger optimal minimum ζ-distances than those with a constellation

size Q = 2n− 1 (n ≥ 3).



26

4. RATE-ONE SPACE-TIME BLOCK CODES WITH FULL
DIVERSITY

Multipath fading could severely degrade the performance of wireless com-

munication systems. As an effective method to combat the effects of fading, trans-

mit diversity has been studied extensively in the past many years. The transmit

diversity scheme proposed by Alamouti [36] is a simple and effective orthogonal

space-time block code of rate one for systems with two transmit antennas. Be-

cause of its simplicity in implementation and the feasibility of having multiple

antennas at the base station, this scheme has been deployed in existing mobile

communications systems. In [37], Tarokh et al. extended the orthogonal design

to systems with an arbitrary number of transmit antennas and provided a class of

rate-one real orthogonal codes. It was also proved that complex orthogonal design

with transmission rate one does not exist for more than two transmit antennas

(see [37] and [45] for nonsquare designs). In [96] Boariu et al. discussed a method

to construct a class of rate-one nonorthogonal space-time block codes with partial

diversity. Real Hadamard matrices played a key role in the scheme proposed in

[96]. A class of quasi-orthogonal space-time block codes for systems with four

transmit antennas was proposed in [46, 47, 67]. These quasi-orthogonal codes

provide partial diversity but transmission rate one. To achieve full diversity for

quasi-orthogonal codes for four transmit antennas, constellation rotation schemes

were proposed in [48, 49]. Compared with the space-time block codes in [97–99],

quasi-orthogonal codes result in constant power for each transmit antenna with

constant amplitude modulation, which is desirable for practical implementation.

Sethuraman et al. proposed a family of rate one space-time block codes from di-

vision algebras [68], which also provide full diversity and constant transmit power
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for any number of transmit antennas. However, division algebra codes have higher

decoding complexities and lower coding gains than quasi-orthogonal codes.

In this chapter, we provide a systematic method for designing rate-one

codes, real or complex, with full diversity and minimum inter-symbol interference

(ISI)1 for a general multiple-input multiple-output (MIMO) system. Through

this systematic method, existing quasi-orthogonal codes for four or less transmit

antennas are extended to systems with a larger number of transmit antennas. The

proposed code structures are based on the real orthogonal codes given in [37] and

can be used for both real and complex signals. Although the codes derived are

nonorthogonal for complex signals, the orthogonality property is used in the ISI

minimization process. Because of ISI, the decoder for these nonorthogonal codes

is more complex than that for orthogonal codes. Thus, we provide a generalized

reduced-complexity decoding algorithm for the proposed codes. This decoding

method can also be applied for orthogonal codes.

4.1. System Model

We consider a wireless communication system with N transmit antennas in

the base station and M receive antennas in the remote. The transmission matrix

is expressed as

1Note that ISI here refers to the mutual interference among input symbols transmitted

from different antennas and different time slots within a frame.
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G =




c1
1 c2

1 . . . cN
1

c1
2 c2

2 . . . cN
2

...
...

. . .
...

c1
L c2

L . . . cN
L




(4.1)

where cn
l , l = 1, · · · , L, n = 1, · · · , N, is the symbol transmitted from an-

tenna n at time l. Generally, elements of G are linear combinations of input

symbols (s1, s2, · · · , sK) and their complex conjugates. For most widely used

codes, however, each element of G is related to a single input symbol sk (e.g.,

ske
jφ, φ ∈ [0, 2π)). The codes given in [36, 37, 46, 47, 67, 68] are all of this type,

which is also our focus in this chapter. Note that complex conjugate and sign

change of sk are special cases of ske
jφ. The code rate is defined as R = K/L.

At time slot l, signals {c1
l , · · · , cN

l } are transmitted simultaneously from the N

transmit antennas, and the average power of data streams from each transmit

antenna is normalized to 1/N .

We consider a frequency-nonselective Rayleigh fading channel. Thus, the

path gain from transmit antenna n to receive antenna m, denoted as hn,m, is

modeled as samples of independent complex zero-mean Gaussian random variables

(RVs) with variance 0.5 per real dimension. The wireless channel is assumed to

be quasi-static so that the path gains are constant over a frame of length L and

change independently from one frame to another.

Let the received signal by antenna m at time l be rm
l . The receiver model

is expressed by

R =

√
ρ

N
GH + W (4.2)
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where R = {rm
l }1≤l≤L,1≤m≤M is the L × M received signal matrix, H =

{hn,m}1≤n≤N,1≤m≤M is the N × M channel fading coefficient matrix, W =

{wm
l }1≤l≤L,1≤m≤M is the L × M additive noise matrix whose elements are sam-

ples of independent zero-mean complex Gaussian RVs with variance 1/2 per real

dimension, and ρ is the signal-to-noise ratio (SNR) per receive antenna.

With perfect channel state information, the maximum likelihood (ML)

receiver computes metric

d =

∥∥∥∥R−
√

ρ

N
GH

∥∥∥∥
2

F

(4.3)

over all possible transmitted signal sets (s1, s2, · · · , sK) and decides in favor of the

set that minimizes d (‖·‖F stands for Frobenius norm).

4.2. Generalized Quasi-Orthogonal Codes

4.2.1. Code construction

Since our focus is on codes for which each element of G is related to a

single input symbol, it is clear from (4.3) that GHG ((·)H stands for conjugate

transpose) is the only source of ISI. If all off-diagonal elements of GHG are zero,

the transmission is ISI free. Thus, the orthogonal design (columns of G are

mutually orthogonal) has zero ISI, and all transmitted symbols for such design

can be separated by using a maximum likelihood decoder.

To minimize ISI in rate-one design, we could maximize the number of zero

off-diagonal elements, as all nonzero off-diagonal elements of GHG have the same

statistics and therefore contributes the same amount of ISI. Quasi-orthogonal

codes are constructed based on maximizing the number of orthogonal column
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pairs in the code matrix. Quasi-orthogonality should hold for any complex input

symbols, not just some specific complex symbols. Additionally, for real symbols

the code matrix should be an orthogonal matrix so that it is suitable for both real

and complex symbols. Thus, the proposed code has the same structure as the real

orthogonal codes given in [37], but differs in that some elements are changed to

their conjugates. Before detailing the systematic construction method for the type

of codes described in the beginning of Section 4.2.1, let us prove two propositions.

Proposition 1: Any two column vectors that are both orthogonal to the

third column vector must be nonorthogonal to each other.

Proof: Recall that we only consider code matrices each entry of which is

related to a single input symbol. For rate-one transmission with constant power,

a necessary condition to achieve full diversity without feedback is that each input

symbol appears in each row and each column of the code matrix only once. Con-

sider three column vectors a, b, and c. If a is orthogonal to b and a contains any

input symbol sk, then b must contain s∗k, where (·)∗ stands for complex conjugate.

For the same reason, s∗k must appear once in c. Since both b and c contain s∗k, they

are nonorthogonal to each other. An indirect proof is that if Proposition 1 were

assumed not true, then one should find three mutually orthogonal columns. This

implies that a rate-one complex orthogonal design for 3 transmit antennas exists,

which leads to a conclusion that contradicts the theorem given in [37] (Theorem

5.4.2]).

Proposition 2: The maximum number of orthogonal column pairs of a

K ×N code matrix is (N/2)2 when N is even and (N2 − 1)/4 when N is odd.

Proof: With the restrictions of the design being considered, the code matrix

has a size of K×N (K = L for rate-one design). Consider a complex rate-one code

matrix. Without loss of generality, we assume that the first column is orthogonal
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to a maximum of α other columns. To maximize the total number of orthogonal

column pairs, we could let each of the remaining N−α−1 columns be orthogonal to

all of the α columns. According to Proposition 1, the total number of orthogonal

column pairs is α(N − α). Let f(α) = α(N − α). It is easy to determine the

maximum values of f(α) for integer α in the range 1 ≤ α ≤ N − 1. These values

are found to be (N/2)2 for even N and (N−1
2
× N+1

2
) for odd N , which can be

realized by dividing all columns into two groups and making any column of one

group orthogonal to all columns of the other group. The number of columns in

the two groups must be kept (N − 1)/2 and (N + 1)/2 for odd N , and N/2 for

even N .

For complex codes, rate-one design can be generalized by fixing the posi-

tions and signs of the symbols in the real orthogonal design and then changing

half (the top half, the bottom half, or the middle half) of all rows to their complex

conjugates. Let us consider changing the top half as an example. For square rate-

one real orthogonal codes when K is an integer power of 2, we can always partition

G into four sub-blocks as G =




Ga
(1···K/2) Ga

(K/2+1···K)

Gb
(K/2+1···K) Gb

(1···K/2)


 for real design, and

G =




Ga∗
(1···K/2) Ga∗

(K/2+1···K)

Gb
(K/2+1···K) Gb

(1···K/2)


 for complex design. Consequently, any column

in the left half of G is orthogonal to any column in its right half. This method

thus maximizes the number of orthogonal column pairs according to Proposition

2. Similarly, we can prove that changing the bottom half or the middle half of all

rows also achieves the maximum number of orthogonal column pairs. Although

different choices of these rows will affect the positions of the nonzero elements in

GHG, the total number of nonzero elements is the same. Therefore, these codes

have the same performance.



32

We provide below a few examples of complex rate-one codes obtained by

applying the proposed method. These codes are based on changing the middle

rows of the real codes presented in [37] as

G4 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 s∗4 s∗1 −s∗2

−s4 −s3 s2 s1




,

G8 =




s1 s2 s3 s4 s5 s6 s7 s8

−s2 s1 s4 −s3 s6 −s5 −s8 s7

−s∗3 −s∗4 s∗1 s∗2 s∗7 s∗8 −s∗5 −s∗6

−s∗4 s∗3 −s∗2 s∗1 s∗8 −s∗7 s∗6 −s∗5

−s∗5 −s∗6 −s∗7 −s∗8 s∗1 s∗2 s∗3 s∗4

−s∗6 s∗5 −s∗8 s∗7 −s∗2 s∗1 −s∗4 s∗3

−s7 s8 s5 −s6 −s3 s4 s1 −s2

−s8 −s7 s6 s5 −s4 −s3 s2 s1




.

The Alamouti scheme can be considered as a special case of the proposed

design. By changing the last row of the real orthogonal matrix




s1 s2

−s2 s1


, we

obtain the complex design G2 =




s1 s2

−s∗2 s∗1


, which is the Alamouti scheme. Note

that orthogonality still holds for this 2×2 complex code. The design G4 from the

proposed method and the code matrix for four transmit antennas given in [46],

A4 =




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 −s∗4 s∗1 s∗2

s4 −s3 −s2 s1




, have the same performance for complex signals as
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GH
4 G4 and AH

4 A4 have an equal number of nonzero elements and these nonzero

elements have identical statistical properties (mean and variance). However, the

transmission matrix in [46] does not completely eliminate ISI for real input signals

whereas the proposed design does. Additionally, the proposed design can be

applied to systems with an arbitrary number of transmit antennas, whereas the

Jafarkhani scheme [46] is restricted to systems with four transmit antennas.

4.2.2. Generalized fast decoding

As it is well known, orthogonal codes can be decoded symbol by symbol.

In other words, other symbols do not cause any interference in the process of

decoding a particular symbol. Therefore, to decode any symbol, all other symbols

can be assumed to be zero in the code matrix without performance loss. For

example, to decode s1 for the Alamouti scheme, one could let s2 = 0 so that

the code matrix becomes




s1 0

0 s∗1


. The decision variable for s1 is obtained as

ŝ1 =
∑M

m=1(h
∗
1,mrm

1 + h2,mrm∗
2 ), which is the same as the result derived in [36].

Applying this technique to various types of orthogonal codes (e.g., rate 1, 1/2, or

3/4 codes), one can easily find the decision variable without the lengthy calculation

that is otherwise needed. Similarly, for quasi-orthogonal codes such as G8, group

(s1, s2, s7, s8) can be decoded by letting s3 = s4 = s5 = s6 = 0. For large-size

constellations, complexity even with the fast ML decoding algorithm could still be

very high. In this case, the sphere decoder (lattice decoder) [69] could be applied

after the generalized fast ML decoder to further lower complexity.
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4.2.3. Optimal constellation rotation for quasi-orthogonal codes

Constellation rotation for 4×4 codes has been addressed in [48, 49]. Thus,

we only consider G8 in this letter. Consider G8 (1,2,7,8), which is formed by letting

s3 = s4 = s5 = s6 = 0 in G8. The minimum rank of G8 (1,2,7,8)(S)−G8 (1,2,7,8)(S̃)

is 4 for some common modulation schemes such as phase-shift keying (PSK) and

quadrature amplitude modulation (QAM), where S = [s1, s2, s7, s8]
T . Therefore,

G8 only provides a diversity order 4 without constellation rotation. Full diversity

can be achieved by constellation rotation only if the determinant of G8 (1,2,7,8)(S)−
G8 (1,2,7,8)(S̃) is always nonzero.

For quasi-static flat Rayleigh fading channels, the upper bound of the pair-

wise error probability is given as [49, 40]

P (G → G̃) ≤ 1

2

(
r∏

i=1

λi

)−M ( ρ

4N

)−rM

(4.4)

where G and G̃ are two different but arbitrarily chosen code matrices, r =

min(rank(G−G̃)) is the diversity order, and λ1, λ2, · · · , λr are the nonzero eigen-

values of (G− G̃)(G− G̃)H . The minimum value of the product λ1λ2 · · ·λr over

all pairs of distinct code matrices is defined as the coding gain. For G8 with

full diversity, det[G− G̃] =
(
det[(G− G̃)H ]

)∗
6= 0. Maximizing the coding gain

is equivalent to maximizing the minimum absolute value of the determinant of

(G− G̃).

Consider the group (s1, s2, s7, s8) with

b =
∣∣∣det[G8 (1,2,7,8) − G̃8 (1,2,7,8)]

∣∣∣ =
∣∣(s1 − s̃1)

2 + (s2 − s̃2)
2 + (s7 − s̃7)

2 + (s8 − s̃8)
2
∣∣4 .

(4.5)
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Let s1 be the reference symbol with a rotation angle 0 (without rotation)

and rotation angles for s2, s7, and s8 be θ1, θ2, and θ3, respectively. Eq. (4.5)

can then be re-written as

b =
∣∣(s1 − s̃1)

2 + ej2θ1(s2 − s̃2)
2 + ej2θ2(s7 − s̃7)

2 + ej2θ3(s8 − s̃8)
2
∣∣4 . (4.6)

It is very difficult to determine the optimal values of the three variables

(θ1, θ2, θ3) simultaneously via an analytical approach. Moreover, the optimal ro-

tation angles are constellation dependent. Through exhaustive numerical search

and careful inspection, it is found that when the minimum value of b is maximized

Eq. (4.6) can always be written as

b =
∣∣∣
[
(s1 − s̃1)

2 + ej2θ′(s2 − s̃2)
2
]

+ ej2θ
[
(s7 − s̃7)

2 + ej2θ′(s8 − s̃8)
2
]∣∣∣

4

. (4.7)

where θ′ = π/4 for QAM and θ′ = π/Q for even-sized PSK with constellation size

of Q. Note that θ′ is the optimal rotation angle for quasi-orthogonal codes with

four transmit antennas [49, 51]. This leaves θ the only variable to be determined.

In other words, if we let X be the new constellation formed by (s1−s̃1)
2+ej2θ′(s2−

s̃2)
2, then maximizing the minimum value of b is equivalent to maximizing the

minimum distance between any point in X and any point in Y = ej2θX . If the

minimum distance is nonzero (except between the origins of constellations X and

Y), then full diversity is achieved.

For 4QAM symbols {
√

2
2
±

√
2

2
j,−

√
2

2
±

√
2

2
j}, the optimal value of θ and

the corresponding b can be determined by using the geometric method given in

[51]. Fig. 4.1 shows five circles with radii {2, 2√2, 4, 4
√

2, 6}. For constellation X ,

there are four points uniformly distributed on each circle. The angles of the four
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FIGURE 4.1. Constellation X and Y = ejπ/6X .

points on the same circle are {0, π/2, π, 3π/2} or {π/4, 3π/4, 5π/4, 7π/4}. The

optimal value of θ is found to maximize the distance between (x1, y1) and the

distance between (x2, y1) simultaneously. It is found that for 4QAM θ = π/12

and the minimum value of b is maximized to be
(
8− 8 cos π

6

)2
.

The conclusion that θ = π/12 is optimal is briefly proved as follows.

1. Consider the four points on the same circle. It is straightforward that after

constellation rotation by 2θ = π/6, the distance between any point in X
and any point in Y is greater than or equal to the distance between (x1, y1).
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2. Consider a pair of points (x, y) on the different circles. First, let us not

consider the middle circle and the two outer circles. It is easily found from

Fig. 4.1 that 2θ = π/6 is optimal and distances dist(x1,y1) = dist(x2,y1) =
√

8− 8 cos π
6

= 1.0353. It is also easy to find that the distances between

middle circle and its adjacent circles are greater than 1.0353. Finally, we

need to check point pair (x, y) on the two outer circles, for which it is

determined that the distance between (x, y) on the two outer circles is always

greater than 1.0353. Therefore, 2θ = π/6 is the optimal rotation angle

(θ = π/12) for 4QAM.

Because of the symmetry of X , the minimum value of b is a periodic func-

tion of θ with a period of π/4 for QAM and π/Q for even-sized PSK with a

constellation size Q. There are two optimal rotation angles for any modulation

within one period (e.g., π/6 is another optimal rotation angle for 4QAM). For

higher order modulation schemes, analysis via an analytical approach is difficult.

Through exhaustive numerical search, we determined the optimal rotation angles

in the sense of maximizing coding gain for some commonly used constellations

and listed them in Table 1.

Constellation θ (radians, within one period)

4QAM (QPSK) π/12, π/6

8PSK 0.165, 0.227

16QAM 0.322, 0.464

16PSK 0.0825, 0.1138

Table 1: Optimal rotation angles for some commonly used constellations.
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Unlike G4 given in [48, 49], for which all QAM constellations have the

same optimal rotation angles, the optimal rotation angles of 4QAM and 16QAM

are different for G8.

4.3. Simulation Results
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theoretical lower bound for diversity 5 (4QAM)
G5 without rotation (4QAM)
G5 with optimal rotation (4QAM)

FIGURE 4.2. Performance comparison between G5 and theoretical lower bound

(N = 5, M = 1, 2 bits/s/Hz).

Error performance of the codes derived using the proposed method is sim-

ulated and compared with the theoretical lower bound. The theoretical lower

bound is obtained based on a model with one transmit antenna and NM receive

antennas that provides full receive diversity. To make it a fair comparison, the

average transmission power for this model is normalized to 1/N , the same as the

space-time block coded system with N transmit antennas. The decision variable

for any symbol is expressed as
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FIGURE 4.3. Performance comparison between G5 and theoretical lower bound

(N = 5, M = 1, 4 bits/s/Hz).

ŝ =
NM∑
i=1

(√
ρ

N
|hi|2s + h∗i ηi

)
(4.8)

where ηi, i = 1, · · · , NM, are samples of independent zero-mean complex Gaus-

sian random variables with variance 1/2 per real dimension, hi is the fading coef-

ficient for the ith receive antenna, and s is a symbol. Rate-one ISI-free codes (i.e.,

orthogonal codes) such as the Alamouti code achieves this bound.

Fig. 4.2 and Fig. 4.3 show, respectively, the simulated bit error rate

(BER) versus SNR curves for 4QAM and 16QAM systems with five transmit

antennas and one receive antenna. Code matrix G5 is the taken as the first five

columns of G8. The codes obtained using the proposed method with the optimal
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constellation rotation angles were found to have the same BER-SNR slope as

the theoretical BER lower bound. This verifies that the codes derived in this

letter achieve full diversity. Without rotation, these codes suffer from performance

degradation at the high SNR region because of a loss in diversity. Performance

of the code proposed in [68] is also shown in Fig. 4.2. Its code matrix is given as


s1 ejωs5 ejωs4 ejωs3 ejωs2

s2 s1 ejωs5 ejωs4 ejωs3

s3 s2 s1 ejωs5 ejωs4

s4 s3 s2 s1 ejωs5

s5 s4 s3 s2 s1




. Through computer search, the optimal value of ω

in the sense of maximizing coding gain is obtained to be 5.38 radians for 4QAM.

Compared with quasi-orthogonal codes, this code suffers from performance loss

due to higher ISI.

4.4. Conclusion

We have provided a systematic design method of rate-one space-time block

codes with full diversity for systems with an arbitrary number of transmit anten-

nas. Our code structures are based on the real orthogonal codes and can be applied

to real as well as complex signals. Full diversity is achieved by constellation ro-

tation. A decoding method has been provided to lower the decoding complexity

of these codes when applied to a MIMO system. Simulation results verified these

properties of the codes derived.
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5. EXACT ERROR PROBABILITY FOR SPACE-TIME
BLOCK-CODED MIMO SYSTEMS OVER RAYLEIGH FADING

CHANNELS

Most existing analysis on the performance of STBC has focused on error

rate upper bounds [40, 54–58], whereas in [59] an exact error probability for co-

herent and differentially coherent schemes proposed by Alamouti for two transmit

antenna systems [36, 72] was derived. The major purpose of this chapter is to

extend the results in [59] and derive the analytical error performance expressions

of coherent and differentially coherent orthogonal STBCs for systems with an

arbitrary number of transmit and receive antennas.

5.1. Performance Analysis

In this chapter, we consider phase shift keying signals only. Recall that the

transmission matrix is

Gc =




c1
1 c2

1 . . . cN
1

c1
2 c2

2 . . . cN
2

...
...

. . .
...

c1
L c2

L . . . cN
L




(5.1)

by applying the orthogonality property of the transmission matrix Gc, we have

GH
c Gc = αIN , where (·)H denotes complex conjugate transpose, α is a scalar, and

IN is the N×N identity matrix. Decoding can be done using only linear operations

on the received signals and channel fading coefficients. We apply the decision

variables given in [36, 37, 70, 71] and derive the closed-form error probability

expressions for systems with different transmission rates based on the method

introduced in [74, 75].
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5.1.1. Rate 1 codes

The decision variable for rate 1 codes with PSK modulation is given as [36,

70]

ŝ =
M∑

m=1

N∑
n=1

(√
Es

N
|hn,m|2s + Vn,m

)
(5.2)

where Vn,m is the noise component associated with channel coefficient hn,m and is

given as Vn,m ∈ {±h∗n,mvn,m,±hn,mv∗n,m}, and vn,m, n = 1, · · · , N, m = 1, · · · ,M ,

are independent samples of zero-mean complex Gaussian random variables with

variance N0

2
per real dimension. For example, with the real transmission matrix

[37] G3 =




s1 s2 s3

−s2 s1 −s4

−s3 s4 s1

−s4 −s3 s2




, the decision variable for s2 is given as

ŝ2 =
M∑

m=1

(
h∗2,mrm

1 − h1,mrm∗
2 + h3,mrm∗

4

)

=
M∑

m=1

[
3∑

n=1

√
Es

3
|hn,m|2s2 +

√
Es

3
(h1,mh∗3,m−

h∗1,mh3,m)s4 + h∗2,mηm
1 − h1,mηm∗

2 + h3,mηm∗
4

]
. (5.3)

note that only the real part of above equation is of our concern be-

cause sp, p = 1, · · · , 4, are real numbers. The interference term is

<
{√

Es

3
(h1,mh∗3,m − h∗1,mh3,m)s4

}
= 0, where <{·} denotes the real part. In this

case v1,m = ηm
2 , v2,m = ηm

1 , v3,m = ηm
4 , and signal-to-noise ratio (SNR) is deter-

mined to be
PM

m=1

PN
n=1 |hn,m|2Es

NN0
.

Let Xk = h∗n,m, Yk =
√

Es

N
hn,ms ± vn,m if Vn,m = ±h∗n,mvn,m, and Xk =

hn,m, Yk =
√

Es

N
h∗n,ms ± v∗n,m if Vn,m = ±hn,mv∗n,m. The decision variable in (5.2)
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can then be written in a general form as ŝ =
∑NM

k=1 (XkYk) = ŝr + jŝi for an

(NM)th-order diversity system, where ŝr = <{ŝ}, the real part of ŝ, and ŝi =

={ŝ}, the imaginary part of ŝ. Although each pair of the complex zero-mean

Gaussian random variables (Xk, Yk) are correlated, the NM pairs (Xk, Yk) are

independent and identically distributed. Let the magnitude of ŝ be r =
√

ŝ2
r + ŝ2

i .

The decision variable for space-time block coded MPSK signals is expressed as

θ = tan−1 (ŝi/ŝr).

Based on the assumption that all signaling waveforms are equally likely,

we assume, without loss of generality, that symbol s has a zero phase (i.e., s = 1).

The joint characteristic function of random variables ŝr and ŝi can be expressed

in the form [75]

Ψ(jξ1, jξ2) =




4
ΛxxΛyy(1−µ2)(

ξ1 − j 2µ√
ΛxxΛyy(1−µ2)

)2

+ ξ2
2 + 4

ΛxxΛyy(1−µ2)2




NM

(5.4)

where Λxx = E(|Xk|2) = 1, Λyy = E(|Yk|2) = Es

N
+ N0, Λxy = E(XkYk) =

√
Es

N

are identical for all values of k, and µ = Λxy√
ΛxxΛyy

=
√

Es/N0

Es/N0+N
. Note that a

real-valued parameter µ implies that the signals have a symmetric spectrum.

The Fourier transform of function Ψ(jξ1, jξ2) with respect to variables ξ1

and ξ2 is given as

p(ŝr, ŝi) =
(1− µ2)NM

(NM − 1)!π2NM

(√
ŝ2

r + ŝ2
i

)NM−1

× exp(µŝr)KNM−1

(√
ŝ2

r + ŝ2
i

)
(5.5)

where KNM−1(·) is the modified Hankel function of order NM − 1. The joint

probability density function (PDF) of r and θ is expressed as

p(r, θ) =
(1− µ2)NM

(NM − 1)!π2NM
rNM−1exp[µr cos (θ)]KNM−1(r). (5.6)
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The marginal PDF of θ is obtained by integrating p(r, θ) over r as

p(θ) =
(−1)NM−1(1− µ2)NM

2π(NM − 1)!

{
∂NM−1

∂bNM−1

[
1

b− µ2 cos2 θ
+

µ cos θ

[b− µ2 cos2 θ]3/2

cos−1

(
−µ cos θ

b1/2

)]}∣∣∣∣
b=1

. (5.7)

note that in the special case of no diversity (i.e., NM = 1), the expression given

in Eq. (5.7) reduces to the well-known case of single-antenna systems with PSK

signaling over frequency-nonselective Rayleigh fading channels.

Because p(θ) is an even function of θ, we only need to consider the range

of 0 ≤ θ ≤ π. Furthermore, the continuity of the integrand and its derivatives,

together with the fact that the limits θ1 and θ2 are independent of b, allow us to

interchange the sequence of integration and differentiation. Thus, we have

∫ θ2

θ1

p(θ)dθ =
(−1)NM−1(1− µ2)NM

2π(NM − 1)!

∂NM−1

∂bNM−1

{
1

b− µ2

[
µ
√

1− (b/µ2 − 1)x2

b1/2
cot−1 x−

cot−1

(
xb1/2/µ√

1− (b/µ2 − 1)x2

)]}x2

x1

∣∣∣∣∣
b=1

(5.8)

where xi = −µ cos θi√
b−µ2 cos2 θi

, i = 1, 2.

It is easy to verify that θ1 = π/2 implies x1 = 0 and θ2 = π implies

x2 = µ/
√

b− µ2. Therefore, for BPSK signals the bit error rate (BER) expression

is given as

P2b = 2

∫ π

π/2

p(θ)dθ

=
(−1)NM−1(1− µ2)NM

2(NM − 1)!

∂NM−1

∂bNM−1

[
1

b− µ2
− µ

b1/2(b− µ2)

]∣∣∣∣
b=1

. (5.9)

this integration can be obtained in closed form as

P2b =
1

2


1− µ

NM−1∑

k=0




2k

k




(
1− µ2

4

)k


 . (5.10)
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FIGURE 5.1. Rate 1 codes with BPSK modulation.

The simulated and analytical error performance curves of rate 1 codes with

different system parameters are shown in Fig. 5.1.

5.1.2. Rate 3/4 complex codes

The decision variable for rate 3/4 codes with PSK modulation can be

expressed as [71]

ŝ =
M∑

m=1

N∑
n=1

[√
Es

N
|hn,m|2s + Vn,m

]
(5.11)

where the noise component Vn,m ∈ [±h∗n,mvn,m,±hn,mv∗n,m, Ξ] and Ξ is a complex

random variable with a zero mean and variance N0. For example, with the trans-
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mission matrix [71] H3 =




s1 s2
s3√
2

−s∗2 s∗1
s3√
2

s∗3√
2

s∗3√
2

−s1−s∗1+s2−s∗2
2

s∗3√
2
− s∗3√

2

s2+s∗2+s1−s∗1
2




, the decision variable for s1

is expressed as [71]

ŝ1 =
M∑

m=1

[
h∗1,mrm

1 + h2,mrm∗
2 +

h∗3,m(rm
4 − rm

3 )

2
− h3,m(rm

3 + rm
4 )∗

2

]

=
M∑

m=1

[
3∑

n=1

√
Es

3
|hn,m|2s1 + h∗1,mηm

1 + h2,mηm∗
2 +

1

2
(h∗3,mηm

4 − h∗3,mηm
3 − h3,mηm∗

4 − h3,mηm∗
3 )

]
. (5.12)

For this case v1,m = ηm
1 , v2,m = ηm

2 , and V3,m = 1
2
(h∗3,mηm

4 − h∗3,mηm
3 −

h3,mηm∗
4 − h3,mηm∗

3 ). Obviously, V3,m has a zero mean and variance N0, and all

noise components (V1,m, V2,m, and V3,m) are mutually independent. The SNR is

obtained to be
PM

m=1

PN
n=1 |hn,m|2Es

NN0
, which is the same as rate 1 codes. Comparing

Eq.(5.2) and Eq.(5.11), we find that the method used for rate 1 codes is also suit-

able for rate 3/4 codes. The symbol error probability (SEP) for MPSK (assuming

Q constellation points) signaling is

PQ = 2

∫ π

π/Q

p(θ)dθ

=
(−1)NM−1(1− µ2)NM

π(NM − 1)!

∂NM−1

∂bNM−1

{
1

b− µ2

[
π

Q
(Q− 1)−

µ sin (π/Q)√
b− µ2 cos2 (π/Q)

cot−1

(
−µ cos (π/Q)√
b− µ2 cos2(π/Q)

)]}∣∣∣∣∣
b=1

. (5.13)

For QPSK signaling with Gray code mapping, it is obvious that a single-

bit error occurs if the received phase is in the range of π/4 < θ < 3π/4, and a

double-bit error occurs if the received phase is in the range of 3π/4 < θ < π.

Therefore, the probability of bit error is obtained as
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P4b =

∫ 3π/4

π/4

p(θ)dθ + 2

∫ π

3π/4

p(θ)dθ

=
(−1)NM−1(1− µ2)NM

2(NM − 1)!

∂NM−1

∂bNM−1

[
1

b− µ2
− µ

(b− µ2)(2b− µ2)1/2

] ∣∣∣∣
b=1

. (5.14)

The BER expression given in Eq. (5.14) can be obtained in closed form as

P4b =
1

2


1− µ√

2− µ2

NM−1∑

k=0




2k

k




(
1− µ2

4− 2µ2

)k


 . (5.15)

As another example, the BER for 8PSK signaling with Gray code mapping

is obtained as

P8b =
1

3

[
2

∫ 3π/8

π/8

p(θ)dθ + 4

∫ 5π/8

3π/8

p(θ)dθ + 4

∫ 7π/8

5π/8

p(θ)dθ + 4

∫ π

7π/8

p(θ)dθ

]

=
(−1)NM−1(1− µ2)NM

3π(NM − 1)!





∂NM−1

∂bNM−1


 1

b− µ2


3π

2
−

µ
√

1− 1/
√

2
√

2b− µ2(1 + 1/
√

2)

× cot−1
−µ

√
1 + 1/

√
2

√
2b− µ2(1 + 1/

√
2)
−

µ
√

1 + 1/
√

2
√

2b− µ2(1− 1/
√

2)

× cot−1
−µ

√
1− 1/

√
2

√
2b− µ2(1− 1/

√
2)











∣∣∣∣∣
b=1

. (5.16)

Following the same procedure, we can obtain the bit error rate expressions

for other higher-order PSK schemes (e.g., 16PSK and 32PSK) from Eq. (5.8).

However, a simple closed-form expression exists only for P2b and P4b.

The simulated and analytical error performance curves of rate 3/4 codes

with various system parameters are shown in Fig. 5.2.

5.1.3. Rate 1/2 complex codes

The decision variable for rate 1/2 codes with PSK modulation can be

expressed as [71]
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FIGURE 5.2. Rate 3/4 codes with QPSK modulation.

ŝ =
M∑

m=1

N∑
n=1

[
2

√
Es

N
|hn,m|2s + Vn,m

]
(5.17)

where Vn,m has a variance 2N0, instead of N0.
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For example, with the transmission

matrix [71] A4 =




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 s∗4 s∗1 −s∗2

−s∗4 −s∗3 s∗2 s∗1




, the decision variable for s1 is given

as [71]

ŝ1 =
M∑

m=1

(
h∗1,mrm

1 + h∗2,mrm
2 + h∗3,mrm

3 + h∗4,mrm
4 + h1,mrm∗

5 + h2,mrm∗
6 + h3,mrm∗

7 + h4,mrm∗
8

)

=
M∑

m=1

[
4∑

n=1

2

√
Es

4
|hn,m|2s1 + (h∗1,mηm

1 + h1,mηm∗
5 ) + (h∗2,mηm

2 + h2,mηm∗
6 ) + (h∗3,mηm

3 +

h3,mηm∗
7 ) + (h∗4,mηm

4 + h4,mηm∗
8 )

]
. (5.18)

The signal-to-noise ratio is obtained to be
2
PM

m=1

PN
n=1 |hn,M |2Es

NN0
. Obviously,

rate 1/2 codes provide full diversity as rate 3/4 codes but have an additional 3dB

SNR advantage when compared with rate 1 and rate 3/4 codes. As a result, in a

BER vs SNR plot, the curve for rate 1/2 code must be parallel to that for rate 3/4

code and the latter performs 3 dB worse if we use the same modulation scheme for

both codes. So the error probability of rate 1/2 codes has the same form as that

of rate 3/4 codes. The only difference is that the parameter µ must be modified

to µ =
√

2Es/N0

2Es/N0+N
=

√
Es/N0

Es/N0+N/2
for rate 1/2 complex codes.

The simulated and analytical error performance curves of rate 1/2 codes

with various system parameters are shown in Fig. 5.3. By comparing Fig. 5.1 with
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FIGURE 5.3. Rate 1/2 codes with QPSK modulation.

Fig. 5.3, we found that 1/2 rate codes have an additional 3dB SNR advantage

compared with rate 1 codes1, and the diversity order for both cases are the same.

5.1.4. Differential space-time block codes

To calculate the decision metric of maximum likelihood decoding, a receiver

that employs the maximum likelihood decoding method needs the estimates of the

channel coefficients. When neither the receiver nor the transmitter has the knowl-

1Note that there is no interference between the inphase and quadrature components

for QPSK symbols.
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edge of the channel, full-diversity differential coding schemes could be employed.

In [72], the Alamouti scheme (2 transmit antennas system) was extended to dif-

ferential coding. In [73] the differential orthogonal space-time coding scheme was

further extended to MIMO systems. The encoding and decoding details for differ-

ential space-time codes can be found in [72, 73]. Because the orthogonality prop-

erty of the transmission matrices is still maintained in the differential scheme, the

decoding procedure also has a linear computational complexity. However, signals

transmitted from two adjacent blocks are correlated with the differential scheme,

whereas signals in two adjacent blocks are independent with the coherent scheme.

It has been shown [72, 73] that performance of the differential scheme is 3dB worse

than the coherent scheme at high SNR values. In the low SNR region, there is

a slight bias due to the second-order noise terms with the differential schemes.

Thus, the error rates with high SNR values can be easily obtained using the same

method applied for the coherent schemes, except that parameter µ must be mod-

ified as µ =
√

Es/2N0

Es/2N0+N
=

√
Es/N0

Es/N0+2N
. For a system with two transmit antennas,

this yields the result as given in [76].

The simulated and analytical error performance curves of differential codes

with various system parameters are shown in Fig. 5.4. As we expect, there is a

slight mismatch between analytical and simulation results at low SNR values due

to the second order noise terms.

5.2. Conclusion

We have derived the closed-form expressions of the error probability for co-

herent and differentially coherent STBC schemes over slowly fading, flat Rayleigh

channels. These results can be applied for performance evaluation of space-time
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FIGURE 5.4. Differential codes with BPSK modulation, full rate.

block coded systems with different coding rates and an arbitrary number of trans-

mit and receive antennas. Simulation results match well with the analytical results

derived.
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6. AN ADAPTIVE POWER ALLOCATION SCHEME FOR
SPACE-TIME BLOCK CODED MIMO SYSTEMS

Space-time block codes provide transmit diversity over fading channels. In

a commonly used STBC, transmit power is equally divided among all transmit

antennas. However, if the transmitter has full or partial knowledge of the channel,

adaptive transmit power allocation that allocates more power to the transmit

antenna with a better fading condition will improve the received signal-to-noise

ratio. In [77–80], several adaptive power allocation methods for systems with

two transmit antennas were introduced. These schemes can be considered as a

variation of the Alamouti scheme [36]. In [81], a method to transmit the Alamouti

block code based on selecting two out of three transmit antennas was proposed.

When the transmitter does not have perfect knowledge of the fading coefficients,

none of the methods mentioned above can guarantee the maximum SNR at the

receiver.

In this chapter, we derive the maximum SNR gain limit achievable by

adaptive power allocation for STBC designed for multiple-input multiple-output

systems when perfect feedback is available. Then, an adaptive power allocation

scheme with imperfect feedback is proposed and analyzed. A design parameter u is

introduced to control the power scaling factors. SNR gain of the proposed scheme

over the conventional scheme in which power is equally distributed among all

transmit antennas is provided. The conventional STBC scheme and the adaptive

scheme analyzed in [77] are special cases of the proposed scheme with specific

choices of a design parameter u.
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6.1. System model

Consider a wireless communications system with M transmit antennas and

N receive antennas, denoted as an (M, N) system in this chapter (note that we use

(N,M) in the previous chapters). Each receive antenna responds to each trans-

mit antenna through a statistically independent fading coefficient. The received

signals are further corrupted by additive white Gaussian noise that is statistically

independent among different receive antennas and different symbol periods. Let

the P ×M transmission matrix be

G =




g1,1 g1,2 · · · g1,M

g2,1 g2,2 · · · g2,M

...
. . . . . .

...

gP,1 gP,2 · · · gP,M




(6.1)

and the transmitted symbol vector be s = [s1, s2, · · · , sK ]T , where [·]T denotes

transpose. Each element of G is a linear combination of symbols s1, s2, · · · , sK and

their complex conjugates. The (p,m)th entry of G, gp,m, will be transmitted at

time slot p from transmit antenna m. The code rate, as defined in [37], is given as

K/P , where P is the number of time slots used to transmit K symbols. The total

average transmit power is normalized to 1. Average energy of each symbol is Es.

Thus, the transmitted signal at time slot p from transmit antenna m is expressed

as xp,m = αm

√
Esgp,m, where αm is a real power scaling factor determined by

feedback information. In order to maintain the same total average power after

power scaling, it is required that

M∑
m=1

α2
m = 1. (6.2)
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for the conventional STBC scheme, αm =
√

1/M, m = 1, · · · ,M .

The channel is assumed to be quasi-static, allowing it to be constant over a

frame of symbols and change independently from one frame to another. Let hm,n

denote the fading coefficient from the mth transmit antenna to the nth receive

antenna of an (M,N) system. Rayleigh fading is considered so that hm,n is a

zero-mean complex Gaussian random variable. The average power of the channel

is also normalized so that hm,n has a unit variance.

The received signal at time p by receive antenna n, rp,n, is given as

rp,n =
M∑

m=1

hm,nxp,m + νp,n (6.3)

where νp,n is the additive zero-mean white Gaussian noise component with vari-

ance N0. The maximum likelihood (ML) decoder calculates the following decision

metric

d =
P∑

p=1

N∑
n=1

∣∣∣∣∣rp,n −
M∑

m=1

αm

√
Esĝp,m

∣∣∣∣∣

2

(6.4)

and the codeword (ŝ1, · · · , ŝK) that minimizes d will be the decoder output.

6.2. SNR Analysis

Assuming a full-diversity system coded with orthogonal space-time block

codes, ML decoding can be achieved using linear operations on rp,n, αm, and hm,n.

In a system with a rate-1 transmission matrix or with a rate-3/4 transmission

matrix, the decision variable for the kth element of s, ŝk, is expressed as [36, 37,

71, 70]
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ŝk =
√

Es

N∑
n=1

M∑
m=1

α2
m|hm,n|2sk + ξk (6.5)

where ξk is the complex zero-mean Gaussian noise component whose variance is

given as σ2
ξk

= N0

N∑
n=1

M∑
m=1

α2
m|hm,n|2. As an example, in a (2,1) system (M =

2, N = 1) with the Alamouti code [36], the received signals are expressed as

r1,1 =
√

Es (α1h1,1s1 + α2h2,1s2) + ν1,1 (6.6a)

r2,1 =
√

Es (−α1h1,1s
∗
2 + α2h2,1s

∗
1) + ν2,1 (6.6b)

and the decision variables are given as

ŝ1 =α1h
∗
1,1r1,1 + α2h2,1r

∗
2,1

=
√

Es

(
α2

1|h1,1|2+α2
2|h2,1|2

)
s1+α1h

∗
1,1ν1,1+α2h2,1ν

∗
2,1

ŝ2 =α2h
∗
2,1r1,1 − α1h1,1r

∗
2,1

=
√

Es

(
α2

1|h1,1|2+α2
2|h2,1|2

)
s2+α2h

∗
2,1ν1,1 − α1h1,1ν

∗
2,1.

In a system with rate-1/2 transmission matrix for complex signals, the

decision variable is given as [71]

ŝk = 2
√

Es

N∑
n=1

M∑
m=1

α2
m|hm,n|2sk + ηk (6.8)

where ηk is the complex zero-mean Gaussian noise component whose variance

is given as σ2
ηk

= 2N0

∑N
n=1

∑M
m=1 α2

m|hm,n|2. Obviously, the SNR for rate-1/2

codes is doubled compared with rate-1 and rate-3/4 codes. With adaptive power

allocation, however, the SNR gain will be the same for codes of rate 1, 3/4, and

1/2. Specifically, let SNRa be the SNR with adaptive power allocation and SNRc
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be the SNR with the conventional equal-power scheme. The ratio SNRa

SNRc
will be

the same for codes of rate 1, 3/4, and 1/2. Thus, in the following discussion, we

will only focus on rate 1 and rate 3/4 codes. The received instantaneous SNR is

obtained as

γ =
Es

N0

M∑
m=1

[
α2

m

N∑
n=1

|hm,n|2
]

. (6.9)

6.3. Adaptive power allocation

6.3.1. Minimum Feedback Allocation Scheme (Antenna Selec-
tion)

Let βm =
∑N

n=1 |hm,n|2. Without loss of generality, we assume that β1 ≥
β2 ≥ ... ≥ βM . Thus, we can write βM−1 = βM + δ1, βM−2 = βM + δ1 + δ2, ...,

β1 = βM + δ1 + ... + δM−1, where βi and δj are nonnegative real numbers. The

instantaneous SNR is then expressed as

γ =
Es

N0

[
βM + δ1

M−1∑
i=1

α2
i + δ2

M−2∑
i=1

α2
i + ... + δM−1α

2
1

]
. (6.10)

obviously, when α1 = 1 (note that
∑M

m=1 α2
m = 1), γ is maximized to be Es

N0
β1.

This means that if β1 ≥ ... ≥ βM holds, the system should allocate all its power

to transmit antenna 1 for best performance.

The feedback required for this scheme is minimum; only dlog2(M)e bits

for each transmission, where d·e denotes the nearest integer towards infinity. For

simplicity, we will refer to this scheme as the minimum-feedback-allocation scheme

(MFAS). Note that this scheme results in antenna selection (one out of M). Other

advantages of the MFAS include that there are no quantization errors for the
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feedback. Because there is no inter-symbol interference, it is easy to realize a

rate-1 transmission for complex signals with full diversity, which is a challenging

issue for MIMO systems with STBCs. However, this scheme, as will be seen from

simulation results in Section V, is more sensitive to feedback errors than other

power allocation schemes.

6.3.2. A New Adaptive Power Allocation Scheme

In practice when feedbacks are imperfect (channel coefficients obtained

by the transmitter through feedback contain errors), a very simple scheme with

α1 > · · · > αM will improve the system performance if β1 > · · · > βM . In this

case there are M − 1 variables, α1, · · · , αM−1 (αM =
√

1−∑M−1
m=1 α2

m ), to be

solved, and it is rather difficult to determine which set of combinations of αm give

the best performance. Thus, we propose a new scheme with only one parameter

that can be easily controlled to maximize SNR at the receiver. Additionally, this

scheme is robust to feedback errors. In the proposed adaptive power allocation

scheme, the real scaling factor for the mth transmit antenna is given as

αm =

√
βu

m∑M
m=1 βu

m

(6.11)

where for a given set of channel coefficients, hm,n, parameter u controls the power

scaling factor αm. It is easy to verify that αm given in (6.11) satisfies the require-

ment given in (6.2).

It is worth of mentioning two special cases, u = 0 and u = 2, which corre-

spond to, respectively, the conventional STBC scheme in which power is equally

distributed among all transmit antennas and the adaptive scheme proposed in [77]
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for a system with two transmit antennas. By applying the power scaling factor

αm given in (6.11) to the instantaneous SNR given in (6.9), we obtain

γu =
Es

N0

∑M
m=1 βu+1

m∑M
m=1 βu

m

. (6.12)

It will be interesting to examine the relationship between SNR and param-

eter u for the adaptive power allocation scheme. The difference between γu+1 and

γu is obtained to be

γu+1 − γu =
Es

N0

(∑M
m=1 βu+2

m∑M
m=1 βu+1

m

−
∑M

m=1 βu+1
m∑M

m=1 βu
m

)

=
Es

N0

(∑M
i=1 βu

i

)(∑M
j=1 βu+2

j

)
−

(∑M
j=1 βu+1

j

)2

(∑M
i=1 βu

i

)(∑M
j=1 βu+1

j

)

=
Es

N0

∑
1≤i<j≤M

βu
i βu

j (βi − βj)
2

M∑
i=1

M∑
j=1

βu
i βu+1

j

. (6.13)

It can be seen from Eq. (6.13) that γu+1 − γu is always greater than or

equal to 0 with equality only if β1 = β2 = · · · = βM . If this condition does not

hold, which is true for any practical scenario, SNR increases monotonically with

parameter u (note that u does not necessarily need to be an integer). However,

performance improvement with the proposed adaptive power allocation scheme

will saturate as u increases. This is proved as follows. Without loss of generality,

we assume that β1 = β2 = · · · = βw = max{β1, · · · , βM}, where 1 ≤ w < M . The

ratio γu+1/γu can be written as

γu+1

γu

=
β−2u−2

1

(
βu+2

1 + · · ·+ βu+2
M

)
(βu

1 + · · ·+ βu
M)

β−2u−2
1

(
βu+1

1 + · · ·+ βu+1
M

)2

=
w2 + ε1

w2 + ε2

.
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it can be easily determined that lim
u→+∞

ε1 = lim
u→+∞

ε2 = 0, which implies

lim
u→+∞

γu+1/γu = 1. (6.14)

additionally, let us consider the limit of γu:

lim
u→+∞

γu =
Es

N0

lim
u→+∞

βu+1
1 + βu+1

2 + ... + βu+1
M

βu
1 + βu

2 + ... + βu
M

=
Es

N0

lim
u→+∞

β1 + β2(
β2

β1
)u + ... + βM(βM

β1
)u

1 + (β2

β1
)u + ... + (βM

β1
)u

=
Es

N0

β1. (6.15)

Eq. (6.15) gives the ultimately achievable maximum SNR at receiver with

the proposed adaptive power allocation scheme, which is the same as the SNR

achieved by antenna selection. Based on Eq. (6.15) and the fact that γu is a con-

tinuous function of u, an appropriate u could results in the maximum achievable

SNR. This reduces the multidimensional problem to a one-dimensional problem.

We define the average SNR gain as the ratio of the average SNR with

the adaptive power allocation scheme to the average SNR with the equal-power

scheme. This ratio is expressed as 10 log10

[
E{γu}
E{γ0}

]
dB, where E{·} denotes expec-

tation. Recall that the average SNR for the traditional equal-power scheme is

given as

E{γ0} =
Es

MN0

E

{
M∑

m=1

[
N∑

n=1

|hm,n|2
]}

=
NEs

N0

. (6.16)

the maximum average SNR gain in dB can be obtained as

10 log10

(
E{γ+∞}
E{γ0}

)
= 10 log10

(
E{max(β1, · · · , βM)}

N

)
(6.17)
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where βi, i = 1, · · · , M , are central chi-square-distributed random variables

with freedom 2N in a Rayleigh fading environment. The cumulative distribution

function (CDF) of βi can be found in closed form as [74]

FY (y) = 1− e−y/2σ2
N−1∑

k=0

1

k!

( y

2σ2

)k

, y ≥ 0 (6.18)

where σ =
√

2/2. The CDF of max(β1, · · · , βM) is given as

Fmax
Y (y) =

[
1− e−y/2σ2

N−1∑

k=0

1

k!

( y

2σ2

)k
]M

=

[
1− e−y

N−1∑

k=0

1

k!
yk

]M

, y ≥ 0. (6.19)

The probability density function (PDF) of max(β1, · · · , βM), pmax
Y (y), can

be calculated by differentiating Fmax
Y (y). The expected value of max(β1, · · · , βM)

is obtained as

E{max(β1, · · · , βM)} =

∫ ∞

0

ypmax
Y (y)dy. (6.20)

as an example, let us consider a (2,1) system:

FY (y) = 1− e−y, y ≥ 0 ⇒

Fmax
Y (y) = (1− e−y)2, y ≥ 0 ⇒

pmax
Y (y) = 2e−y(1− e−y) ⇒

E{max(β1, β2)} =

∫ ∞

0

2ye−y(1− e−y)dy =
3

2
.

therefore, the maximum average SNR gain for a (2,1) system is 10 log10(
3
2
) = 1.76

dB. Values of the maximum average SNR gains for various combinations of M

and N of a MIMO system are evaluated numerically and summarized in Table

6.1.
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Gain (dB) M =2 M =3 M =4 M =5 M =6

N = 1 1.7609 2.6323 3.1875 3.5856 3.8917

N = 2 1.383 2.0588 2.4886 2.797 3.0344

N = 3 1.181 1.7567 2.1232 2.3866 2.5897

N = 4 1.0498 1.5615 1.8876 2.1223 2.3033

N = 5 0.9555 1.4215 1.7188 1.9329 2.0983

Table 6.1: The maximum gains in the average SNR for MIMO systems.

Examining Table 6.1, we find that the maximum gain in the average SNR

due to the proposed adaptive power allocation increases as the number of trans-

mit antennas increases, and decreases as the number of receive antenna increases.

This can be intuitively explained as follows. As M increases with N fixed,

E{max(β1, · · · , βM)} has more dimensions to provide a gain. On the other hand,

when N increases with M fixed, the difference between max(β1, · · · , βM) and the

average value of βi decreases.

6.3.3. The New Scheme with Imperfect Feedback

In a practical system, channel coefficients will not be perfectly known. Even

if channel coefficients were perfectly known, there will be quantization errors in

the feedback. In order to resolve the problem of imperfect feedback and lower

the number of feedback bits required, we pre-determine a finite set of values for

αm. The receiver only needs to inform the transmitter that which pre-determined

power scaling factor should be assigned to antenna m. For example, in a system

with two transmit antennas, we pre-determine a fixed set of values for αm as

αm ∈ (0.8, 0.6). If the receiver finds out that β1 > β2, it then needs only 1 bit to
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instruct the transmitter to allocate 0.8 to antenna 1. For a general system with

M transmit antennas, dlog2(M !)e feedback bits are needed.

For simplicity, we assume that the feedback system is a SISO system

with the same constellation as the information channel. The average energy

of feedback symbols is also Es. The pre-determined power scaling factors

αm,m = 1, · · · , M for a particular choice of parameter u can be determined

using the method as follows. As defined earlier, βm is a function of fading

coefficients hm,1, · · · , hm,N . For each realization of the channel coefficients, let

βmax = max{β1, · · · , βM}. The pre-determined largest power scaling factor αmax

can be set as αmax = E
{√

βu
maxPM

m=1 βu
m

}
. In the same manner, let βsec be the second

largest value among β1, · · · , βM , for each realization of the channel. The second

largest power scaling factor αsec is calculated to be αsec = E
{√

βu
secPM

m=1 βu
m

}
. This

method can be continued until the smallest scaling factor αmin is determined as

αmin =
√

1− α2
max − α2

sec − · · ·. As an example, if u is chosen to be u = 1 for a

system with M = 3, then the pre-determined power scaling factors can be calcu-

lated to be (α1, α2, α3) ≈ (0.7765, 0.5158, 0.3620). If u is chosen to be u = 2,

then (α1, α2, α3) ≈ (0.8602, 0.4144, 0.2973).

For 3 transmit antennas, we have to use dlog2(3!)e = 3 bits to feed back

3! = 6 possible groups (αmax, αsec, αmin). However, the 3 bits could represent

8 unique groups, yielding two invalid groups. The transmission power allocation

strategy for this case is that if feedback symbols are erroneously decoded as one

of two invalid groups, equal power allocation will be used in next transmission.
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FIGURE 6.1. BER versus parameter u (M = 2, N = 1, 2)

6.4. Numerical Examples and Discussion

Simulated results demonstrating the performance of the proposed adap-

tive power allocation schemes are obtained in this section. Fig. 6.1 shows the

error probability of different systems as a function of parameter u. It is found

that for a (2, 1) system with BPSK modulation operating at Es/N0 = 15dB,

the optimum value of u is 0.6. The corresponding power scaling factors for

the proposed adaptive scheme with imperfect feedbacks can be determined to

be (αmax, αmin) ≈ (0.8196, 0.57293). For a (2, 2) system with QPSK modulation

operating at Es/N0 = 11dB, the optimum value of u is found to be 1. The corre-

sponding power scaling factors for the two transmit antennas are determined to

be (αmax, αmin) ≈ (0.88452, 0.4665).
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It is usually not easy to determine the optimum value of u by an analytical

approach since it depends on Es/N0 in the information channel, the power of

feedback symbols, the number of transmit and receiver antennas (M, N), and the

modulation scheme. With the feedback model and PSK modulation, the optimum

u in the sense of minimizing error probabilities can be calculated numerically using

the procedure described below.

0 5 10 15
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10
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10
−2

10
−1

10
0

Eb/No

B
E

R

MFAS with perfect feedback (SNR limit)
new scheme with u=0.6, imperfect feedback
equal power
MFAS, imperfect feedback

FIGURE 6.2. BER versus Eb/N0 curves for different schemes (M = 2, N = 1,

BPSK)

According to Eq. (6.5), orthogonal space-time block codes in an (M, N)

system have the same performance as a (1, MN) system (a diversity-reception

only system) using maximal ratio combining, provided that the transmit power

per antenna is the same in both systems to make the comparison fair. There-

fore, the optimum value of u can be found by using the exact error probabil-
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ity for multichannel PSK signals given in ( [74], Appendix C). As an example,

let us consider the Alamouti scheme using BPSK in a (2, 1) system. We can

easily compute the error probability in the feedback channel Pfeedback and the

error probability in the information channel for equal power allocation Pi,equal

(no adaptive power allocation), where Pi,equal = f( Es

N0
) is a function of the re-

ceived signal-to-noise ratio. Additionally, we have E{βmax} = 1.5 from Table

6.1. Thus, E{βmin} = 2 − 1.5 = 0.5. The average error probability for the

information channel with adaptive power allocation under imperfect feedback is

given by Pi,adp = (1−Pfeedback)f(1.5α2
max

Es

N0
) + Pfeedbackf(0.5(1−α2

max)
Es

N0
), where

αmax ∈ (0, 1) is a variable that depends on u. If we fix Es

N0
, then Pi,adp is a function

of u. The optimal value of u can be found by minimizing Pi,adp.
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FIGURE 6.3. BER versus Es/N0 curves for different schemes (M = 2, N = 2,

QPSK)
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Figs. 6.2 and 6.3 compare the error performances of the MFAS, the equal-

power scheme, and the adaptive power allocation scheme which applies the opti-

mum u. Although the optimum u depends on Es/N0, for simplicity the values of

u obtained in Fig. 6.1 are used for any Es/N0 in Figs. 6.2 and 6.3. It is found that

when perfect feedback symbols are assumed, the antenna-selection scheme works

the best. However, when there are feedback symbol errors, the antenna-selection

scheme suffers from diversity loss.

6.5. Conclusion

We have proposed a new power allocation scheme for space-time block

coded MIMO systems. If the channel coefficients are known, the power scaling

factors for all transmit antennas are controlled by a single parameter u which,

for some special cases, can be predetermined numerically. Different choices of

parameter u yields different SNR gains. The maximum achievable SNR gain

can be achieved by choosing an appropriate value of u. Some special choices of

parameter u with the proposed adaptive power allocation scheme reduce to some

existing STBC power allocation schemes (i.e. [77, 36]). A much simpler power

allocation scheme (single antenna selection) that needs significantly less number

of feedback bits is also proposed. Performance gains of the proposed schemes

over the conventional equal-power STBC scheme are simulated for systems with

different number of antennas and modulation schemes.
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7. SIMPLIFIED RECEIVER DESIGN FOR STBC BINARY CPM
WITH MODULATION INDEX H = 1/2

CPM is a very attractive modulation scheme for wireless communications

because of its constant envelope, compact spectrum, and flexible bandwidth-

performance tradeoffs. Binary CPM with modulation index 1/2 (for brevity, we

call it as BCPM0.5 in this paper) is widely used in wireless communications.

For example, minimum shift keying (MSK) and Gaussian minimum shift keying

(GMSK) which is used in the global system for mobile communications (GSM).

The duration LT of the pre-modulation filter is one of the parameters that controls

the signal spectrum, where T is the bit period; increasing the L results in a more

compact spectrum at the expense of a higher bit-error rate for the same bit-energy-

to-noise-density ratio Eb/N0 due to the increased level of ISI. These properties

make BCPM0.5 an attractive scheme to use, especially in power-constrained appli-

cations. Combining space-time codes with it adds diversity while having constant

envelope properties and low complexity.

In the literature, space-time code design criteria for general CPM were

developed by Zhang and Fitz [82], and a reduced-complexity receiver for multi-

antenna layered space-time systems with binary CPM was described by Zhao and

Giannakis [83]. Space-time coded MSK was analyzed by Cavers [84]. In partic-

ular, the relationship between offset and non-offset modulation formats and the

effect of pulse shape was explored. Orthogonal space-time coding with CPM for

systems with two transmit antennas was introduced in [85, 86] to reduce decoding

complexity. However, Viterbi decoders were used to recover transmitted symbols

in these papers and decoding complexity is still relatively high. Additionally, the

power spectrum density (PSD) of the transmitted signal is affected because of the

introduction of an additional phase shift.



69

In this chapter, we focus on designing orthogonal space-time block codes

[36, 37] for BCPM0.5 to achieve spatial diversity. The orthogonal code design

is based on Laurent decomposition of BCPM0.5 signals combined with differen-

tial precoding. We then derive a simplified decoder with a linear finite impulse

response (FIR) filter to reduce ISI inherent in BCPM0.5 signals with two trans-

mit antennas, and thus significantly improve the error performance. For STBC

BCPM0.5 with three and more transmit antennas, decoding based on FIR fil-

tering becomes inefficient; therefore, we derive a soft decision feedback decoding

scheme to simplify the receiver while guaranteeing a satisfactory performance.

The STBC BCPM0.5 designed in this paper has a lower decoding complexity

than space-time trellis coded BCPM0.5, while their performances are similar. We

will briefly discuss the signal model in Section 7.1. Section 7.2 presents details

of the design of STBC with BCPM0.5 based on Laurent decomposition. Two

low-complexity, ISI-resistant decoding schemes for STBC BCPM0.5 are presented

in Section 7.3. Finally, we provide performance analysis and numerical results to

assess the diversity performance of the proposed code and the effect of various

system parameters.

7.1. System Model

The baseband model of a binary CPM signal can be expressed as [82, 87]

s(t) =

√
Eb

T
ejθ(t), t ≥ 0 (7.1)

where Eb is the energy per bit. The phase of the transmitted signal is expressed

as
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θ(t) = 2πh

∫ t

0

N−1∑
i=0

αig(τ − iT )dτ, t ≥ 0 (7.2)

where h = 0.5 is the modulation index in this paper, αi ∈ {+1,−1} with equal

probability are the transmitted bits, N is the number of consecutive bits, and g(t)

is the frequency pulse and is nonzero in the interval [0, LT ], g(t) has area equal

to 1/2 and is symmetric about LT/2. For instance, g(t) of GMSK is expressed as

g(t) =
1

2T

[
Q

(
β

BT

T

(
t− (L+1)T

2

))
−Q

(
β

BT

T

(
t− (L−1)T

2

))]
, t ∈ [0, LT ]

where β = 2π/
√

ln(2), B is 3-dB bandwidth and Q(·) is the Gaussian Q-function

defined as

Q(t) =

∫ ∞

t

1√
2π

e−τ2/2dτ (7.3)

L depends on the system time-bandwidth product BT ; the smaller the BT prod-

uct, the larger the impulse length.

Let us define the integral of the frequency pulse as

q(t) =

∫ t

0

g(τ)dτ. (7.4)

then, θ(t) in Eq. (7.2) can be written as

θ(t) = πh

N−1∑
i=0

αiq(t− iT ), t ≥ 0. (7.5)

We consider systems with M transmit antennas and one receive antenna in

this paper, but the results can be easily extended to systems with multiple receive

antennas. The received signal is given as

r(t) =

√
1

M
hT (t)s(t) + n(t) (7.6)
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where (·)T denotes transpose,
√

1
M

is used to normalize the total transmit power,

n(t) is a complex Gaussian noise with variance N0, and h(t) is the channel fading-

coefficient vector expressed as

h(t) = [h1(t), h2(t), · · · , hM(t)]T (7.7)

with hi(t) being the fading coefficient from transmit antenna i to the receive

antenna. The transmitted signal vector is expressed as

s(t) = [s1(t), s2(t), · · · , sM(t)]T (7.8)

where si(t) is the signal from transmit antenna i. As typically accepted in space-

time codes, we adopt a quasistatic fading model in this paper. Thus, hi(t) is

constant over a frame of transmitted data and changes independently from frame

to frame.

7.2. Code Design Based on Laurent Decomposition

The complex baseband binary CPM signal in Eq. (7.1) can be exactly

expressed as the sum of K = 2L−1 pulse-amplitude modulation (PAM) signals as

[87–89]

s(t) =

√
Eb

T

K−1∑

k=0

N−1∑
n=0

ejπhak,nck(t− nT ), t ∈ [LT, NT ] (7.9)

where the pseudo-symbols {ak,n} are related to the transmitted bits as

ak,n =
n∑

i=0

αi −
L−1∑
j=1

αn−jβk,j. (7.10)
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In Eq. (7.10), βk,j ∈ {0, 1} is used in the binary representation of the index

k as

k =
L−1∑
j=1

2j−1βk,j, k ∈ [0, K−1]. (7.11)

function ck(t) in Eq. (7.9) is expressed as

ck(t) = f0(t)
L−1∏
j=1

fj+Lβk,j
(t), k ∈ [0, K − 1] (7.12)

where

fj(t)=
sin(φ(t + jT ))

sin(πh)
= f0(t + jT ) (7.13)

φ(t)=





2πh
∫ t

0
g(τ)dτ, t ∈ [0, LT )

πh− 2πh
∫ t−LT

0
g(τ)dτ, t ∈ [LT, 2LT )

0, otherwise.

among the K terms of PAM signals in Eq. (7.9), the first term c0(t−nT ) usually

contains the bulk of the total signal energy [88], and the length of c0(t) is (L+1)T

[89]. Therefore, considering only the first term c0(t−nT ) will significantly reduce

the decoding complexity with a negligible performance loss. By keeping only the

major term, the binary CPM signal can be approximated as

s(t) ≈
√

Eb

T

N−1∑
n=0

ejπha0,nc0(t− nT ). (7.14)

For example, for MSK signals with BT = ∞, L = 1, K = 2L−1 = 1, the

frequency impulse is

g(t) =





1
2T

, t ∈ [0, T )

0, otherwise
(7.15)

and Laurent decomposition consists of only the c0(t) term, which is expressed as
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c0(t) =





sin( πt
2T

), t ∈ [0, 2T )

0, otherwise.
(7.16)

this also leads to the well-known interpretation of MSK as offset-QPSK in which

the pulse shape is a half-cycle sinusoid with period 4T [87].

Suppose that the receiver has perfect knowledge of the channel fading

coefficients. The maximum likelihood (ML) receiver calculates

E =

∫ NT

LT

∣∣∣∣∣r(t)−
√

1

M
hT (t)ŝ(t)

∣∣∣∣∣

2

dt (7.17)

under all possible combinations of the transmitted bit sequence and the one which

minimizes E is the estimated sequence â = [â0,L, â0,L+1, · · · , â0,N ], where we as-

sume that [â0,0, â0,1, · · · , â0,L−1] are known, since, as observed in [87], Laurent

decomposition is accurate only for t ≥ LT in Eq. (7.9).

Then, α̂n can be decoded by differential decoding of the pseudo-symbols

â0,n and â0,n−1. Note that â0,n =
∑n

i=0 α̂i [87, 88]. In this case, the Viterbi algo-

rithm can be applied because of the memory structure of CPM signals. However,

there is a performance loss due to differential detection. Fortunately, this loss can

be eliminated by a data precoding algorithm applied to the non-return-to-zero

(NRZ) source data symbols prior to BCPM0.5 modulation [90]. The precoding

scheme is described as follows.

Let dk, dk ∈ {±1}, k ≥ 0, denote the equally probable source data symbols

at time t = kT . The output of the precoder αk, which is the input to the BCPM0.5

modulator, is formed as

αk = (−1)kdkdk−1 (7.18)
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where d−1 could be chosen as d−1 = 1. Since symbols dk and αk have identical

statistics, BCPM0.5 signals with and without precoding have the same power

spectrum.

When precoding is applied to the source data symbols dk, we have

ejπha0,n = ej π
2
a0,n

=





jdn, n = 0, 2, 4, · · ·
dn, n = 1, 3, 5, · · ·

(7.19)

with precoding, the memory in BCPM0.5 is eliminated; thus we can use a lin-

ear receiver, rather than a Viterbi decoder, to decode the precoded BCPM0.5

signals. Now, we can readily apply OSTBC for BCPM0.5 with precoding. The

transmission matrix is given by

G =




g11 g12 · · · g1M

g21 g22
. . . g2M

...
. . . . . .

...

gp1 gp2 · · · gpM




(7.20)

where gij is information bit or its negative transmitted from antenna j within bit

interval i and p is the block size.

For example, the modified Alamouti scheme (the transpose of the orig-

inal Alamouti code, because we want to keep the transmitted signal from the

first antenna the same as transmitted signal in single input single output (SISO))

with transmission matrix




x1 −x2

x2 x1


 can be used for 2 transmit antennas with

BCPM0.5. From the first transmit antenna, we transmit d0, d1, d2, d3, · · · ; there-

fore, the transmitted signal is exactly the same as the single-antenna case. For

the second transmit antenna, we transmit −d1, d0,−d3, d2, · · · . Obviously, signals

from the two transmit antennas have the same spectrum. The modified Alamouti
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FIGURE 7.1. The modified Alamouti scheme (M = 2) for MSK with precoding

based on Laurent decomposition.

scheme for MSK signals based on Laurent decomposition with precoding is shown

in Fig. 7.1.

7.3. Low-Complexity Decoding

7.3.1. The receiver without FIR

After passing through a matched filter c0(−t), the received signal is sampled

at time t = kT . The output of the sampler is expressed as ri =
∫ (i+L+1)T

iT
r(t)c0(t−

iT )dt, which is a sufficient statistic of the transmitted signal. Space-time decoding

for linear modulations can also be applied on ri.



76

Neglecting ISI in detecting BCPM0.5 signals leads to the simplest receiver

whose decoding complexity is the same as that of linear modulations. However,

ISI increases as the number of transmit antennas and L increase, which will re-

sult in performance degradation. Note that, for MSK, there is no ISI for single

transmit antenna as adjacent pulses are orthogonal (in-phase and quadrature are

orthogonal). In this case, the decision variables are formed by multiplying the

complex conjugate of fading coefficients with the received signal ri. For multiple

transmit antennas, however, ISI cannot be eliminated after space-time decoding

because transmitted signals from different transmit antennas experience indepen-

dent fading.

We illustrate the decoding scheme by using the following example. Let us

consider MSK with the Alamouti space-time coding scheme. To decode symbols

d2n and d2n+1, we use the outputs of the sampler after the matched filter (r2n

and r2n+1). With the assumption of a quasistatic fading, we can write hi(t) = hi.

Therefore, we have

r2n =

√
Eb

MT
[h1 (jd2ncfull + (d2n−1 + d2n+1)chalf)

+h2 (−jd2n+1cfull + (d2n−2 + d2n)chalf)] + n2n (7.21a)

r2n+1 =

√
Eb

MT
[h1 (d2n+1cfull + j(d2n + d2n+2)chalf)

+h2 (d2ncfull − j(d2n+1 + d2n+3)chalf)] + n2n+1 (7.21b)

where
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cfull =

∫ (L+1)T

0

c2
0(t)dt =

∫ 2T

0

sin2

(
πt

2T

)
dt = T (7.22a)

chalf =

∫ (L+1)T

0

c0(t)c0(t− T )dt = T/π (7.22b)

n2n =

∫ (2n+L+1)T

2nT

n(t)c0(t− 2nT )dt (7.22c)

n2n+1 =

∫ (2n+L+2)T

(2n+1)T

n(t)c0(t− (2n + 1)T )dt. (7.22d)

by applying the space-time decoding algorithm described by Alamouti [36], we

have

d′2n = <{
h∗1r2n/j + h2r

∗
2n+1

}

= <
{√

Eb

MT

[
(|h1|2 + |h2|2)d2ncfull − jh∗1h2chalf(2d2n + d2n−2 + d2n+2)

]−

jh∗1n2n + h2n
∗
2n+1

}

= <
{√

EbT

M

[
(|h1|2 + |h2|2)d2n − jh∗1h2

π
(2d2n + d2n−2 + d2n+2)

]
−

jh∗1n2n + h2n
∗
2n+1

}
(7.23a)

d′2n+1 = <{−h∗2r2n/j + h1r
∗
2n+1

}

= <
{√

Eb

MT

[
(|h1|2 + |h2|2)d2n+1cfull + jh1h

∗
2chalf(2d2n+1 + d2n−1 + d2n+3)

]
+

jh∗2n2n + h1n
∗
2n+1

}

= <
{√

EbT

M

[
(|h1|2 + |h2|2)d2n+1 +

jh1h
∗
2

π
(2d2n+1 + d2n−1 + d2n+3)+

jh∗2n2n + h1n
∗
2n+1

}
(7.23b)

where <{·} denotes the real part.
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The decision variables can be written as

d̂2n = sgn{d′2n} (7.24a)

d̂2n+1 = sgn{d′2n+1} (7.24b)

where sgn{·} denotes signum function. Note that the nonzero terms 2d2n+d2n−2+

d2n+2 and 2d2n+1 + d2n−1 + d2n+3 in Eqs. (7.23a) and (7.23b) cause ISI. If ISI is

completely canceled, space-time coded MSK has the same error performance as

space-time coded BPSK.

7.3.2. The receiver with FIR

Examining Eqs. (7.23a) and (7.23b) and noting that <{−jh∗1h2/π} =

<{jh1h
∗
2/π}, we found that d′2n and d′2n+1 are equivalent to the outputs when the

input information sequence d0, d1, d2, d3, · · · is passed through a pseudo-channel

modeled as a 5-tap symmetric FIR filter with an impulse response

himp =

√
EbT

M
<

{[
−jh∗1h2

π
, 0, (|h1|2 + |h2|2)− 2jh∗1h2

π
, 0,−jh∗1h2

π

]}
. (7.25)

the output of the pseudo-channel is further corrupted by additive Gaussian noise.

To design the optimum linear receiver in the sense of minimum mean-

square error (MMSE), we apply the method in Chapter 6 of [91]. The optimum

FIR filter to recover the original information bit sequence is obtained to be

cmmse = R−1d (7.26)

where R = E{x(n)xT (n)} (x(n) = d′n, n = 0, 1, · · · ) is the autocorrelation matrix

of d′n, the output of the pseudo-channel which can be calculated by using Eqs.
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(7.23a) and (7.23b), and E{·} denotes expectation. d = E{dnx(n)} is the cross-

correlation vector between the input and the output of the pseudo-channel. Note

that the information bit sequence is assumed to be white with zero mean and

power Pd = E{|dn|2} = 1.

The autocorrelation matrix R is Toeplitz, symmetric, and real, and is

expressed as

R =




rx(0) rx(1) rx(2) rx(3) rx(4)

rx(−1) rx(0) rx(1) rx(2) rx(3)

rx(−2) rx(−1) rx(0) rx(1) rx(2)

rx(−3) rx(−2) rx(−1) rx(0) rx(1)

rx(−4) rx(−3) rx(−2) rx(−1) rx(0)




. (7.27)

the autocorrelation of x(n), rx(l), is obtained as

rx(0) = h2
imp(1) + h2

imp(2) + · · ·+ h2
imp(5) + σ2

v

rx(±1) = himp(1)himp(2) + · · ·+ himp(4)himp(5)

rx(±2) = himp(1)himp(3) + · · ·+ himp(3)himp(5)

rx(±3) = himp(1)himp(4) + himp(2)himp(5)

rx(±4) = himp(1)himp(5)

rx(l) = 0, |l| ≥ 5 (7.28)

where σ2
v is the power of the noise term of d′n given in Eqs. (7.23a) and (7.23b).

The minimum order of cmmse is the number of taps of himp. Note that

although a higher order of cmmse usually results in a better performance, we

still choose the minimum order in this paper to achieve the best performance-

complexity tradeoff. The cross-correlation vector is found to be
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d = [himp(5),himp(4), · · · ,himp(1)]T . (7.29)

consequently, the optimum FIR filter cmmse = R−1d must be an adaptive filter

whose impulse response depends on the estimates of the channel coefficients. In

fact, cmmse is essentially the inverse filter of himp with the noise effect taken into

consideration. In practice, if noise power σ2
v is unknown, we can design a zero-

forcing filter czf based on similar procedures; the only changes needed is to let

rx(0) = h2
imp(1) + h2

imp(2) + · · ·+ h2
imp(5) in Eq. (7.28).

The most complex part of the linear receiver designed in this paper comes

from inverting the correlation matrix R. Since R is a Toeplitz and symmetric

matrix, the Levinson-Durbin recursion algorithm could be applied to efficiently

calculate the inversion. More details of such algorithms can be found in [92].

Moreover, the inversion can be further simplified by considering the zero elements

in R. Overall, the proposed linear receiver has a much lower computational

complexity than existing schemes that employ the Viterbi decoder.

Matched Filter
C0(-t)

Space Time
Decoding

FIR
Cmmse

Sgn()
Output Bits

Channel
Estimates

Sampling at t=KT

FIGURE 7.2. Receiver structure of space-time block coded BCPM0.5 with 2

transmit antennas.

The structure of the proposed linear receiver is shown in Fig. 7.2. As

mentioned earlier, the FIR filter is an adaptive filter whose taps are dependent

on channel estimates. CPM with L = 1 is called full response CPM, i.e. MSK.
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FIGURE 7.3. GMSK with BT = 0.3, L = 3

For partial response BCPM0.5 (L > 1), the design method of FIR receiver is

the same, the only difference is the order of himp. For example, himp for GMSK

with BT = 0.5, L = 2 has five taps (three nonzero taps); himp for GMSK with

BT = 0.3, L = 3 has nine taps (five nonzero taps). however, the smallest two

among five nonzero taps can be ignored to reduce the order to five. The details

are shown in Fig. 7.3.

There are three overlap terms among c0(t) and its time-shifted copies

which, as seen clearly from Eq. (7.23), cause ISI. These terms are expressed

as
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chalf large =

∫ (L+1)T

0

c0(t)c0(t− T ) ≈ 0.52T

chalf middle =

∫ (L+1)T

0

c0(t)c0(t− 2T ) ≈ 0.06T

chalf small =

∫ (L+1)T

0

c0(t)c0(t− 3T ) ≈ 0.0008T. (7.30)

it found that chalf small causes only about 0.1% of the total interference energy;

thus we may ignore its contribution to lower decoding complexity, two among

five nonzero taps are contributed by chalf small only, so we can reduce the order of

himp from nine to five. As a result, GMSK with L = 3 has the same decoding

complexity as that with L = 1, 2. Similarly, for L > 3 GMSK or non-GMSK

BCPM0.5, keeping the pulses that contribute the largest amount of ISI could

significantly decrease the decoding complexity with a negligible performance loss.

7.3.3. The receiver with decision feedback

' ' '

0 1 2
, , ,d d d �

0 1 2
, , ,d d d �

 

FIGURE 7.4. Equivalent system model for space-time block coded GMSK with

4 antennas.

When the number of transmit antennas is greater than two, the symmetry

property of himp does not hold anymore. As an example, let us consider orthogonal
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space time block coded BCPM0.5 for 4 transmit antennas, we apply the transpose

of code matrix (4) in [37] as our transmission matrix in this paper. By apply the

decoding algorithm for linear modulations, we obtain similar results as given Eq.

(7.23) for d′4n, d
′
4n+1, d

′
4n+2, d

′
4n+3. If we treat information bits d0, d1, d2, d3, · · · as

the system input and d′0, d
′
1, d

′
2, d

′
3, · · · as the output, the equivalent model of this

system is illustrated in Fig. 7.4.

The equivalent system model includes four FIR filters with different co-

efficient and a sampler. Unfortunately, the overall system is no longer linear,

and linear receivers will suffer from an irreducible error floor especially when the

value of L is small. Therefore, for more than 2 transmit antennas, we apply a

decision-feedback receiver with soft decisions to achieve a good performance.

Generally speaking, d′n is a linear combination of dn corrupted by noise.

At each iteration of the decision-feedback process, soft decisions for dn are derived

first based on d′n, which is then followed by ISI suppression. A common method

is to use the tanh function [93]; however, in practice, tanh function is difficult

to realize because of its nonlinearity. We will apply a linear function to obtain

optimum soft decisions in the sense of minimum mean-square error.

The output of the space-time decoder is the information bit sequence inter-

rupted by ISI and additive noise, which can be expressed as r = δ0s0 +
∑l

i=1 δisi +

δnn, where si, i = 0, · · · , l, are independent bits with equal probability to take on

the values of -1 and 1, l equals the number of taps of the FIR filter minus one

in the equivalent system model shown in Fig. 7.4, n is the real Gaussian noise,

δi, i = 0, · · · , l, are the power of si, which are essentially the taps of the FIR filter

in Fig. 7.4, and δn is the noise power. The optimal scaler x used to approximate

s0 should minimize mean-square error as
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argmin︸ ︷︷ ︸
x

E





(
δ0s0 +

∑l
i=1 δisi + δnn

x
− s0

)2


 . (7.31)

with some simplifications, we obtain

x =

∑l
i=0 δ2

i + δ2
n

δ0

(7.32)

Strictly speaking, x in Eq. (7.32) is optimal only for the first iteration, as

the signal-to-interference-plus-noise ratio (SINR) will be slightly different after the

first iteration. However, considering the slight variation of SINR for each iteration

will increase the hardware complexity without significant performance improve-

ments. Therefore, we keep x constant in the iterative process. The magnitude of

r/x should be further bounded, i.e., soft decisions for s0 should satisfy sgn{r/x}
if |r/x| > η [94]. We may set η = 1 for any number of transmit antennas and

any frequency impulse length L. Compared with the optimal η values, which can

be found by exhaustive searching, η = 1 suffers from only negligible performance

loss.

To obtain x, we must calculate the power of the FIR filter in the equivalent

system model, which implies that we need to compute the power of four FIR

filters for all the four transmit antennas shown in Fig. 7.4. Fortunately, the

major taps δ0 of these four filters are very close to one another while the weight

magnitudes for the minor taps δi, i = 1, · · · , l, are from the same set but with

different permutations. Therefore, we can use any of the four filters to compute

x, rather than calculating x four times.

Let us again use the system with two transmit antennas to illustrate the

details of the decoding. In Eq. (7.23), the value of d′2n is dependent on d2n−2 and

d2n+2. In order to suppress ISI caused by d2n−2 and d2n+2, we can eliminate the
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effects of d2n−2, d2n+2 by using soft decisions of d2n−2 and d2n+2 from Eq. (7.23).

The soft decision for the first iteration is

d(1)
n =





himp(3)d′nP5
i=1 |himp(i)|2+δ2

n

,
∣∣∣ himp(3)d′nP5

i=1 |himp(i)|2+δ2
n

∣∣∣ < 1

sgn
(

himp(3)d′nP5
i=1 |himp(i)|2+δ2

n

)
,

∣∣∣ himp(3)d′nP5
i=1 |himp(i)|2+δ2

n

∣∣∣ ≥ 1.
(7.33)

The soft decision d
(j)
n for the j-th iteration is computed by substituting d′n

in Eq. (7.33) with d
(j−1)
n . After j iterations, the signum function is applied to

obtain the final estimate of dn. The complexity of the decision-feedback receiver

with soft decisions depends on the number of iterations and the number of taps of

the FIR filters. The number of iterations is dependent on mainly L. However, the

number of taps of the FIR filters depends on L and the number of antennas. When

L is large, which is equivalent to a small BT , the number of taps of the FIR filters

increases, and the complexity of the decision-feedback receiver with soft decisions

increases accordingly. When we allow a small amount of ISI which causes a

negligible performance loss, the decoding complexity could be significantly reduced

as what we mentioned in 7.3.2.

7.4. Performance Analysis

Performance of the proposed linear decoder for two transmit antennas can

be analyzed by considering the major Laurent PAM component only. Based on

the linear system model, the decision variable is given by

d̂n = cmmse ? (himp ? dn + nn) (7.34)

where ? stands for convolution and nn is the colored Gaussian noise term. n2n and

n2n+1 have a zero mean and variance N0T , which can be easily calculated from

Eq. (7.22). Therefore, for each realization of the channel, nn is the noise term



86

in Eq. (7.23), which has zero-mean and variance (|h1|2 + |h2|2)N0T . The major

term of himp, δ0, is usually much greater than other terms δi, i = 1, · · · , l, based

on the statistical properties of the channel. Thus it is reasonable to assume that

cmmse is the inverse filter of himp. Consequently, cmmse ? himp ≈ δ(n), where δ(n)

is kroneckner delta function, and Eq. (7.34) simplifies to

d̂n = dn + cmmse ? nn. (7.35)

The instantaneous signal-to-noise ratio (SNR) is written as

ρin =
1

(|h1|2 + |h2|2)N0T ‖ cmmse ‖2
(7.36)

where ‖ · ‖ denotes Frobenius norm. Assuming that the noise term in Eq. (7.35) is

independent for each realization of the channel, we can calculate the average error

probability by averaging the conditional error probability (conditioned on each

channel realization). Let h1 = λ1 + jλ2 and h2 = λ3 + jλ4, where λ1, λ2, λ3, λ4 are

independent Gaussian random variables with zero mean and variance 1/2. The

average error probability is given as

P (fir)
e =

∫ ∫ ∫ ∫
Q(2ρin)γ(λ1)γ(λ2)γ(λ3)γ(λ4)dλ1dλ2dλ3dλ4 (7.37)

where γ(λ) is probability density function (pdf) of the Gaussian random variable

λ.

The performance with soft decision feedback depends on the SINR received.

SINR values will approach the upper limit as the number of iterations increases.

As the sum of interference and noise terms can be approximated as a Gaussian

random variable when the number of independent interference sources is large,

the error probability could be approximated as [93]
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P (soft)
e ≈ Q

(√
d2

min

Eb

N0

)
(7.38)

where d2
min is normalized minimum squared Euclidean distance which is dependent

on SINR. Generally speaking, increasing the number of iterations in the decision-

feedback process will results in a higher SINR until it saturates at the upper limit.

Thus, a natural question that needs to be answered is the necessary number of

iterations. Such answer can be found by calculating the SINR upper limit and

the SINR for each iteration. When the difference between the SINR limit and the

SINR achieved after a certain number of iterations is smaller than a predefined

threshold, the iteration process can stop. In practice, the SINR difference between

two adjacent iterations is also a good measure which can be used to determine

when to stop the iteration after considering performance-complexity tradeoffs.

7.5. Simulation Results

Error performances of orthogonal space-time block coded BCPM0.5 (we

use GMSK as examples) with two transmit antennas over frequency-flat Rayleigh

fading channels are shown in Figs. 7.5, 7.6, and 7.7, which correspond to GMSK

BT = ∞ (L = 1), BT = 0.5 (L = 2), BT = 0.3 (L = 3), respectively. The size

of a frame over which the quasistatic channel coefficients remain constant is 200

data bits. Signal waveforms over one bit interval T are represented by 16 samples

in the waveform-based simulation.

BER curves of BPSK systems with the Alamouti code is used as the base-

line performance. The exact error probability of BPSK with full diversity employ-

ing the Alamouti code can be found in [74]. It is found that the linear receiver with

an MMSE FIR filter is very robust to ISI. By examining the slopes of the BER
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FIGURE 7.5. Performance of space-time block coded GMSK (BT = ∞, L = 1,

M = 2).

curves, we found that the proposed STBC BCPM0.5 system with linear receiver

achieves full diversity. Comparing the performances of the linear receiver with

and without an FIR filter, we found that at a BER of 10−4 the FIR filter achieves

about 0.6 dB, 1.5 dB and 4.5 dB gains for L = 1, 2, and 3, respectively. With

BT = 0.3, the proposed STBC for GMSK with an FIR filter performs about 1.3

dB worse than BPSK with the Alamouti code at a BER of 10−4; with BT = 0.5,

the gap is within half a dB.

Performance of systems with three and four antennas are shown in Fig. 7.8

and Fig. 7.9, respectively. Soft decision feedback is found achieving full diversity
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FIGURE 7.6. Performance of space-time block coded GMSK (BT = 0.5, L = 2,

M = 2).

for both cases. Without decision feedback, GMSK with BT = 0.3 for 4 antennas

suffers from irreducible error floor due to large ISI.

Comparing our simulation results with the results in [84], we find that

the proposed simplified receiver achieves almost the same performance as an ML

receiver for MSK signals. The complexity of the proposed receiver is lower than

existing algorithms, especially for BCPM0.5 with large L values.

7.6. Conclusion

We have proposed a space-time block code for BCPM0.5 signals. This

scheme is based on Laurent decomposition combined with data precoding, which
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FIGURE 7.7. Performance of space-time block coded GMSK (BT = 0.3, L = 3,

M = 2).

allows us to apply the orthogonal code structure. We have also derived a lin-

ear MMSE receiver for the proposed space-time block coded BCPM0.5 with two

transmit antennas, and a nonlinear MMSE receiver for systems with more than

two antennas. The simplified receiver is very robust to ISI inherent in BCPM0.5

signals. The combination of the proposed orthogonal code and the simplified re-

ceiver achieves full diversity for BCPM0.5 systems, and the decoding complexity

is lower than existing STTC schemes. The performance gap between the proposed

scheme and the baseline scheme - BPSK over frequency-flat Rayleigh fading chan-

nels depends on frequency pulse length L and the number of transmit antennas.
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FIGURE 7.8. Performance of space-time block coded GMSK with 3 transmit
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8. LOW-COMPLEXITY MAXIMUM LIKELIHOOD DECODING
FOR QUASI-ORTHOGONAL SPACE-TIME CODES

8.1. Low-Complexity ML Decoding and Simulation Results

The proposed scheme is based on an effective constellation-reduction pro-

cedure that consists of two main steps. In the first stage, we assume that the

transmitted symbols belong to a lower-size constellation, called the “virtual con-

stellation”, rather than the actual constellation. Once the choice of the virtual

constellation has been made, metrics f14(x1, x4) and f23(x2, x3) [46] are applied to

find the most likely points for all transmitted symbols in the virtual constellation,

where xi, i = 1, · · · , 4 are transmitted symbols from the same constellation. In

the second stage, the receiver moves back to actual constellation, and checks only

those points near the temporary symbol decision made in the first stage. As a

result, the complexity will be significantly reduced when the size of the actual

constellation is large.

As described in [46], decoding of (x2, x3) is similar to decoding of (x1, x4).

Thus, let us consider decoding (x1, x4) only. For 8PSK with actual constella-

tion points {ejkπ/4, k = 0, · · · , 7}, the fast ML decoder must check 82 = 64

possible combinations. In the proposed scheme, the receiver first assumes that

the transmitted signals belong to a QPSK virtual constellation with points

{ejkπ/2, k = 0, · · · , 3}. If, for example, ‘x’ is the decision made in stage 1, then in

stage 2 the receiver checks its five nearby points {xejkπ/4, k = −2, · · · , 2}, which

include ‘x’. The number of comparisons to decode all codewords (including vir-

tual codewords) is 42 +52 = 39, representing a 35.9% reduction when compared to

fast ML decoding. For 16PSK signals the virtual constellation could be chosen as

QPSK If a point in the virtual constellation is decided, the receiver then checks the
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nearest seven points in the actual constellation. The complexity is 42 + 72 = 65,

which equals 25.4% of 162 comparisons required in fast ML decoding. For both

32PSK and 64PSK, the virtual constellation could be chosen as 8PSK for decod-

ing in stage 1. In stage 2, the receiver checks seven points for 32PSK and thirteen

points for 64PSK. Complexity of the proposed scheme is reduced to 11% and 5.7%

of that of fast ML decoding for 32PSK and 64PSK, respectively.

For 16QAM signals, the virtual constellation can be chosen as 4QAM which

includes the four points having the largest amplitude in the actual constellation.

In stage 2, the receiver checks the nearest nine points, and complexity is reduced

to 37.9%.

s1

s2

s3

Circle 1

Circle 3

Circle 2

FIGURE 8.1. The virtual constellation and actual constellation for 64QAM.
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For 64QAM, however, a good choice of the virtual constellation is not

formed by a subset of the actual constellation points. This is illustrated in Fig.

8.1 where the actual constellation is represented by stars and the virtual constel-

lation is 16QAM. Points in the 16QAM are divided, according to their geometric

properties, into three groups: group 1 - four squares, group 2 - four circles, and

group 3 - eight triangles. For example, if a point in group 1 (e.g., ‘s1’ as shown

in Fig. 8.1) is the stage-1 decision, the receiver then checks the nearest thirteen

points within circle 1 as illustrated in Fig. 8.1. Similarly a stage-1 decision in

group 2 and 3 (e.g., ‘s2’ and ‘s3’ as shown in Fig. 8.1) causes the receiver to

check the nearest twenty four and eighteen points within circle 2 and circle 3,

respectively. Strictly speaking, the virtual-constellation points in different groups

may have different probabilities to be chosen as the decision in stage 1. For sim-

plicity in estimating the complexity reduction, we assume that they have equal

probabilities. With this assumption, decoding complexity of the proposed scheme

is about 162 + (24×4+18×8+13×4
16

)2 = 589, which equals 14.4% of that of fast ML

decoding.

Our proposed scheme is nonlinear, but its performance depends on the

linearity of ML decoding. If ML decoding is fully linear (e.g, orthogonal codes

for which a decision variable exists), the proposed scheme always achieves exactly

the same performance as ML decoding regardless of the choices of the virtual

constellation. For QOC, however, a decision variable for ML decoding does not

exist, so linear ML decoding does not exist either. The proposed scheme can still

achieve the same performance as ML decoding with appropriate choices of the

virtual constellation in stage 1 and a sufficient number of nearby points in stage

2. Poor choices of these two parameters will cause an error floor at high SNR.
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FIGURE 8.2. CDF of condition numbers of channel matrices for QOC and SM.

Linearity can be measured by cumulative distribution function (CDF) of

condition number (the ratio between maximum singular value and minimum sin-

gular value) of channel matrix [95]. For orthogonal codes, condition number is

always one (full linearity). For QOC and spatial multiplexing (SM) or V-BLAST

[41], CDF of condition numbers of their channel matrices are illustrated in Fig.8.2.

Note that QOC has comparable decoding complexity with 2 transmit antennas

SM. Rotated QOC has full diversity 4N , where N is the number of receive anten-

nas, it is required for SM to have 4N receive antennas to get the same diversity

order. Obviously, channel matrix for SM is more ill-conditioned than that for

QOC. Performance of proposed scheme suffers from ill-conditioned channel ma-

trix when this scheme is applied to SM. However, it is interesting to see linearities
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FIGURE 8.3. Performance comparison of maximum likelihood and the proposed

decoding schemes for PSK signals.

of QOC and SM increase with increase of the number of receive antennas. There-

fore, our scheme can achieve good performance for SM when the number of receive

antennas is large. Or complexity of our scheme can be reduced further (i.e. de-

crease searching range in stage 2) for QOC with large number of receive antennas.

Simulation results are obtained to demonstrate the performance of the

proposed low-complexity decoding scheme for QOC and how it compares with ML

decoding. For all simulations, M = 1, N = 4 and Gray mapping are adopted.

Simulated bit error rate (BER) versus received signal-noise ratio (SNR) of ML

decoding and the proposed scheme for PSK and QAM signals are shown in Fig.

8.3 and Fig. 8.4, respectively. It is clearly seen that the proposed scheme achieves
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the same performance as ML decoding when BER is as low as 10−6, for practical

wireless system, simulated BER is low enough.
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FIGURE 8.4. Performance comparison of maximum likelihood and the proposed

decoding schemes for QAM signals.

8.2. Conclusion

We have proposed a low-complexity decoding scheme for quasi-orthogonal

space-time block codes, mainly for systems with a large constellation size. The

proposed scheme is based on a two-stage procedure. The first stage reduces the

searching range for possible codewords and the second stage determines the final

decoded symbols. Compared to fast ML decoding, such a procedure results in

significant reduction of computational complexity. Performance of the proposed

scheme depends on the linearity of ML decoding.
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9. SUMMARY

In this thesis, I have proposed a new STC design from cyclic design which

achieves full diversity without constellation rotation for four transmit antennas. I

then proposed a systematic method to design QOSTBC for an arbitrary number

of transmit antennas, and derived the optimal constellation rotation angles to

achieve full diversity. I also proposed an analytical method to derive the exact

error probabilities of OSTBC, which can be used to predict the performance of

OSTBC. In order to improve the error performance, I introduced an adaptive

power allocation scheme for OSTBC which can guarantee maximum achievable

SNR. I also applied OSTBC to binary CPM with modulation index h = 0.5, and

developed a simplified receiver for such scheme. Binary CPM with h = 0.5 is

widely used in practical systems, i.e. GSM mobile communications, my proposed

simplified receiver could be used to increase the transmission rate or extend the

coverage range. Finally, I presented a decoding method to reduce the complexity of

QOSTBC without degrading its error performance which also has a high practical

value.
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