2,447 research outputs found

    Lemma for Linear Feedback Shift Registers and DFTs Applied to Affine Variety Codes

    Full text link
    In this paper, we establish a lemma in algebraic coding theory that frequently appears in the encoding and decoding of, e.g., Reed-Solomon codes, algebraic geometry codes, and affine variety codes. Our lemma corresponds to the non-systematic encoding of affine variety codes, and can be stated by giving a canonical linear map as the composition of an extension through linear feedback shift registers from a Grobner basis and a generalized inverse discrete Fourier transform. We clarify that our lemma yields the error-value estimation in the fast erasure-and-error decoding of a class of dual affine variety codes. Moreover, we show that systematic encoding corresponds to a special case of erasure-only decoding. The lemma enables us to reduce the computational complexity of error-evaluation from O(n^3) using Gaussian elimination to O(qn^2) with some mild conditions on n and q, where n is the code length and q is the finite-field size.Comment: 37 pages, 1 column, 10 figures, 2 tables, resubmitted to IEEE Transactions on Information Theory on Jan. 8, 201

    Decoding Reed-Muller codes over product sets

    Get PDF
    We give a polynomial time algorithm to decode multivariate polynomial codes of degree dd up to half their minimum distance, when the evaluation points are an arbitrary product set SmS^m, for every d<∣S∣d < |S|. Previously known algorithms can achieve this only if the set SS has some very special algebraic structure, or if the degree dd is significantly smaller than ∣S∣|S|. We also give a near-linear time randomized algorithm, which is based on tools from list-decoding, to decode these codes from nearly half their minimum distance, provided d0d 0. Our result gives an mm-dimensional generalization of the well known decoding algorithms for Reed-Solomon codes, and can be viewed as giving an algorithmic version of the Schwartz-Zippel lemma.Comment: 25 pages, 0 figure

    Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography

    Full text link
    We present a generalisation of Twisted Reed-Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for code-based cryptography: These codes resist some existing structural attacks for Reed-Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.Comment: 5 pages, accepted at: IEEE International Symposium on Information Theory 201
    • …
    corecore