100,191 research outputs found

    On the convergence of a fourth-order method for a class of singular boundary value problems

    Get PDF
    AbstractIn the present paper we extend the fourth order method developed by Chawla et al. [M.M. Chawla, R. Subramanian, H.L. Sathi, A fourth order method for a singular two-point boundary value problem, BIT 28 (1988) 88–97] to a class of singular boundary value problems (p(x)y′)′=p(x)f(x,y),0<x≤1y′(0)=0,αy(1)+βy′(1)=γ where p(x)=xb0q(x), b0≥0 is a non-negative function. The order of accuracy of the method is established under quite general conditions on f(x,y) and is also verified by one example. The oxygen diffusion problem in a spherical cell and a nonlinear heat conduction model of a human head are presented as illustrative examples. For these examples, the results are in good agreement with existing ones

    A higher-order method for nonlinear singular two-point boundary value problems

    Get PDF
    We present a finite difference method for a general class of nonlinear singular two-point boundary value problems. The order of convergence of the method for such a general class of problems is higher than the previous reported methods. The method yields a fourth-order convergence for the special case p(x)=w(x)=xα, α≥1

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; Jódar Sánchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Green’s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Green’s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Green’s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & Jódar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    An axisymmetric evolution code for the Einstein equations on hyperboloidal slices

    Full text link
    We present the first stable dynamical numerical evolutions of the Einstein equations in terms of a conformally rescaled metric on hyperboloidal hypersurfaces extending to future null infinity. Axisymmetry is imposed in order to reduce the computational cost. The formulation is based on an earlier axisymmetric evolution scheme, adapted to time slices of constant mean curvature. Ideas from a previous study by Moncrief and the author are applied in order to regularize the formally singular evolution equations at future null infinity. Long-term stable and convergent evolutions of Schwarzschild spacetime are obtained, including a gravitational perturbation. The Bondi news function is evaluated at future null infinity.Comment: 21 pages, 4 figures. Minor additions, updated to agree with journal versio

    Index Theory for Boundary Value Problems via Continuous Fields of C*-algebras

    Full text link
    We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semigroupoid \cT^-X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field C*_r(\cT^-X) of C*-algebras over [0,1]. Its fiber in h=0, C*_r(T^-X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for h\not=0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K_0(C*_r(T^-X))=K_0(C_0(T*X)) -> K_0(K)=Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map
    • …
    corecore