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a b s t r a c t

In the present paper we extend the fourth order method developed by Chawla et al.
[M.M. Chawla, R. Subramanian, H.L. Sathi, A fourth order method for a singular two-
point boundary value problem, BIT 28 (1988) 88–97] to a class of singular boundary value
problems

(p(x)y′)′ = p(x)f (x, y), 0 < x ≤ 1
y′(0) = 0, αy(1)+ βy′(1) = γ

where p(x) = xb0q (x), b0 ≥ 0 is a non-negative function. The order of accuracy of the
method is established under quite general conditions on f (x, y) and is also verified by one
example. The oxygen diffusion problem in a spherical cell and a nonlinear heat conduction
model of a human head are presented as illustrative examples. For these examples, the
results are in good agreement with existing ones.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider a class of scalar singular boundary value problems

Ly ≡ (p(x)y′)′ = p(x)f (x, y), 0 < x ≤ 1 (1)

y′(0) = 0, αy(1)+ βy′(1) = γ , (2)

where α > 0, β > 0 and γ is a finite constant. We assume that p(x) satisfies the following conditions

(A) (i) p (x) > 0 on (0, 1] ,
(ii) p (x) ∈ C1(0, 1],
(iii) p (x) = xb0q (x) on [0, 1], b0 ≥ 0 and for some r > 1

Q (x) = 1/q (x) is analytic in {x : |x| < r}.

Further we assume that

(B) f (x, y) is continuous, ∂ f /∂y exists, it is continuous and ∂ f /∂y ≥ 0∀ 0 ≤ x ≤ 1 and all real y.

The existence-uniqueness of the solution of the boundary value problem (1) and (2) is established in [16,17] for xp′/p
analytic in {x : |x| < r} for some r > 1 and for the more general problem in [8] with nonlinear boundary conditions.
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Table 1
Maximum absolute errors

N/b0 0.25 Order 1.0 Order 2.0 Order 8.0 Order

8 2.99(−3)a 8.21(−4) 6.72(−4) 1.15(–3)
16 1.46(−4) 4.35 3.98(−5) 4.37 4.30(−5) 3.97 9.81(−5) 3.56
32 7.50(−6) 2.08(−6) 2.68(−6) 6.96(−6)
64 3.95(−7) 4.25 1.16(−7) 4.16 1.66(−7) 4.01 4.61(−7) 3.92
128 2.11(−8) 6.99(−9) 1.04(−8) 2.96(−8)
256 1.13(−9) 4.23 4.23(−10) 4.05 6.47(−10) 4.00 1.87(−9) 3.98
a 2.99(−3) = 2.99× 10−3 .

The boundary value problem (1) and (2) with b0 = 0, 1, 2 and q (x) = 1 arises in the study of various tumor growth
problems [1–3,9] with linear f (x, y) and also with non-linear f (x, y) of the form

f (x, y) ≡ f (y) = θy/(y+ κ), θ > 0, κ > 0. (3)

The problem with b0 = 2, q (x) = 1 arises in the study of steady state oxygen-diffusion in a cell with Michaelis-Menten
uptake kinetics and in the study of the distribution of heat sources in the human head [4,14,15], in which

f (x, y) ≡ f (y) = −δe−θy, θ > 0, δ > 0. (4)

There is a considerable literature on numerical methods for such problems e.g. [5,6,10,11,13,18,19]. Ciarlet et al. [6] and
Jamet [13] discussed numerical methods for q(x) = 1, b0 ∈ (0, 1). Russel and Shampine [18] discussed numerical methods
for linear case with p (x) = xb0 , b0 = 1, 2 while in [11] Gustafsson considered a linear problem in (δ, 1] instead of (0, 1]
and constructed compact second order, fourth order and non-compact fourth ordermethods for its solution. In [5,10] fourth
ordermethods are described for the problem (1) in the case p (x) = xb0 , b0 ≥ 1 and boundary conditions y′(0) = 0, y(1) = B.
In the present work, using Chawla’s identity [19], we extend the fourth order finite difference method developed in [5]

for p (x) = xb0 , b0 ≥ 1 and boundary conditions y′(0) = 0, y(1) = B to the problem (1) and (2) where the non-negative
function p(x) satisfies the conditions given in A(i)–(iii). In Section 3 we establish the order of accuracy of the method for
a non-negative function p(x) and under quite general conditions on f (x, y). In the case p (x) = xb0 , this work provides a
fourth order method for b0 ≥ 0, while in most of the work methods are given for b0 ≥ 1. To illustrate the convergence
and to corroborate the order of accuracy of the method, we apply it to one example. The results are displayed in Table 1.
Two physiological problems, the oxygen diffusion problem in a spherical cell and the nonlinear heat-conduction model of a
human head, have also been solved and the results are in good agreement with those of [4,7].

2. Finite difference method

This section is divided in two parts (i) Description of the method and (ii) Construction of the method. All coefficients not
specified explicitly in this section can be found in the Appendix.

2.1. Description of the method

In this section we first state the method and then its construction process is explained in Section 2.2.
For a positive integer N ≥ 2, we consider a uniform mesh wh = {xk}Nk=0 over [0, 1], where xk = kh, h = 1/N . Let

g(x) := f (x, y(x)) (y(x) is the solution), gk = g(xk), yk = y(xk) etc. Now we approximate the differential operator Ly on the
gridwh by the difference operator

(Lh̃y)1 = −̃y1/J1 + ỹ2/J1,
(Lh̃y)k = ỹk−1/Jk−1 − (1/Jk + 1/Jk−1)̃yk + ỹk+1/Jk, k = 2(1)(N − 1),
(Lh̃y)N = ỹN−1/JN−1 − (1/JN−1 + α/(βQN))̃yN + γ /(βQN)

where Lhy is an approximation for a locally integrated version of (py′)′/p (defined in Section 2.2.1), ỹ = (̃yk) denotes the
approximate solution, ỹk ≈ yk and Qk = Q (xk),

Jk =
∫ xk+1

xk
(p(τ ))−1dτ

then the difference scheme for the boundary value problem (1) and (2) is given by Eqs. (5)–(7)

(Lh̃y)1 = b0,1̃g1 + b1,1̃g2 + b−1,1̃g0, (5)

(Lh̃y)k = b−1,k̃gk−1 + b0,k̃gk + b1,k̃gk+1, k = 2(1)(N − 1), (6)

(Lh̃y)N = a−1,N g̃N−1 + a0,N g̃N + (64/9)a1,N g̃N− 38 (7)
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where

g̃k = f (xk, ỹk), g̃0 = f (x0, ỹ0), ỹ0 = ỹ1 −
1

2 (b0 + 1)
x21̃g1,

g̃N− 38 = f
(
xN −

3
8
h, ỹN− 38

)
,

ỹN− 38 = [9ỹN−1 + (55+ 15hα/β)ỹN − 15hγ /β]/64

and the coefficients ai,j, bi,j are given in the Appendix.

2.2. Construction of the method

In this section we first describe the derivation of (6) and then using this, the construction of discretization (7) at x = 1
and (5) at x = 0 are given and estimates for truncation errors are given in Section 3 (without proof).

2.2.1. Derivation of the discretization (6)
By taking z (x) = p (x) y′(x), the differential equation (1) can be written as z ′ = p (x) f (x, y(x)). Then an approximation

for the differential operator Ly on the uniform meshwh is obtained as follows:
We integrate z ′ = p (x) f (x, y(x)) twice, first from xk to τ and then from xk to xk+1 and change the order of integration to

get the following

yk+1 − yk = zkJk +
∫ xk+1

xk

(∫ xk+1

t
(p (τ ))−1 dτ

)
p(t)g(t)dt, (8)

where zk = z(xk) and Jk =
∫ xk+1
xk

(p(τ ))−1dτ . In an analogous way, we get

yk − yk−1 = zkJk−1 −
∫ xk

xk−1

(∫ t

xk−1
(p (τ ))−1 dτ

)
p(t)g(t)dt. (9)

Eliminating zk from (8) and (9) we obtain Chawla’s identity:

yk+1 − yk
Jk

−
yk − yk−1
Jk−1

=
I+k
Jk
+
I−k
Jk−1

, k = 1 (1)N − 1 (10)

where I+k and I
−

k are as follows

I+k =
∫ xk+1

xk

(∫ xk+1

t
(p (τ ))−1 dτ

)
p(t)g(t)dt, (11)

I−k =
∫ xk

xk−1

(∫ t

xk−1
(p (τ ))−1 dτ

)
p(t)g(t)dt. (12)

Now using Taylor’s expansion for Q (as defined by condition A(iii) in Section 1) and g about xk in I±k , the approximation (6)
is obtained for a smooth solution y(x) as

(Lhy)k = b−1,kgk−1 + b0,kgk + b1,kgk+1 + tk, k = 2(1)(N − 1) (13)

where tk is the truncation error and the coefficients can be found in the Appendix.

2.2.2. Derivation of the discretization (7)
For this, we use the Eq. (9) for k = N , the boundary condition at x = 1 and

g ′N =
1
15h

[
55gN + 9gN−1 − 64gN− 38

]
+
h2

16
g ′′′ (ηN) , xN−1 < ηN < xN ,

g ′′N =
16
15h2

[
5gN + 3gN−1 − 8gN− 38

]
+
11h
24
g ′′′
(
η′N
)
, xN−1 < η′N < xN ,

to get

(Lhy)N = a−1,NgN−1 + a0,NgN +
64
9
a1,NgN− 38 + tN (14)

where gN− 38 = g(xN −
3
8h), tN is the truncation error and the coefficients can be found in the Appendix.
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Now discretization (14) involves the unknown yN− 38 which we approximate in the following way:

yN− 38 = ȳN− 38 +
15h3

1024
y′′′N

where

ȳN− 38 =
1
64

[
9yN−1 +

(
55+

15hα
β

)
yN −

15hγ
β

]
.

Now, let gN− 38 = f
(
xN − 3

8h, ȳN− 38

)
, then replacing gN− 38 by gN− 38 in Eq. (14) we obtain the following discretization for a

smooth solution y(x) at k = N

(Lhy)N = a−1,NgN−1 + a0,NgN +
64
9
a1,NgN− 38 + t̄N (15)

where

t̄N = tN +
5h3

48
a1,Ny′′′N

∂ f
∂y

(
xN −

3
8
h, y∗

N− 38

)
,

y∗
N− 38
∈

(
min

{
yN− 38 , ȳN− 38

}
,max

{
yN− 38 , ȳN− 38

})
,

and coefficients can be found in the Appendix.

2.2.3. Derivation of the discretization (5)
We first consider the Eq. (8) for k = 1. This involves z1 which is obtained by integrating z ′(x) = p(x)f (x, y(x)) from 0 to

x1 and using the boundary condition y′ (0) = 0 and is given by

z1 =
∫ x1

0
p(t)g(t)dt.

Now replacing z1 in Eq. (8) we obtain the following identity

y2 − y1
J1

= I1 +
I+1
J1

where I1 =
∫ x1
0 p(t)g(t)dt .

Now using Taylor’s expansion for Q (x) and g about x1 in I1 and I+1 in the above equation, we get the following
discretization for a smooth solution y(x)

(Lhy)1 = b0,1g1 + b1,1g2 + b−1,1g0 + t1 (16)

where t1 is truncation error and coefficients can be found in theAppendix. Since the discretization (16) involves the unknown
value y0 which we approximate in the following way:

y0 = ȳ0 + τ0

where

ȳ0 = y1 −
x21

2 (b0 + 1)
g1

and τ0 =
h3

6 (b0 + 1) (b0 + 2)

{
(b0 + 4) g ′ (ξ0)−

2Q ′1
Q1
g1

}
, 0 < ξ0 < x1.

Now, let g0 = f (x0, ȳ0), then replacing g0 by g0 in Eq. (16) we obtain the following discretization for k = 1:

(Lhy)1 = b0,1g1 + b1,1g2 + b−1,1g0 + t̄1 (17)

where t̄1 = t1 + b−1,1τ0
∂ f
∂y

(
x0, y∗0

)
, y∗0 ∈ (min {y0, ȳ0} ,max {y0, ȳ0}).

2.2.4. Computation of y0
To compute y0, we integrate z ′ = pf twice, first from0 to τ and then from0 to x1, and using boundary condition y′ (0) = 0

we obtain the following
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y1 − y0 =
∫ x1

0

(∫ x1

t
(p (τ ))−1 dτ

)
p(t)g(t)dt.

Now using Taylor’s expansion for Q and g about x1 it is easy to establish the following

y0 = y1 + a0,0g1 + a−1,0g0 + a1,0g2 + O
(
h5
)

where

a±1,0 = −
1
2h

[
±A10,0 +

1
h
A20,0 ∓ (A20,0 − A11,0)Q ′1/Q1

]
,

a0,0 = −
[
A00,0 −

1
h2
A20,0 + (−A10,0 + A01,0)Q ′1/Q1 + (A20,0 − A11,0)(Q

′

1/Q1)
2
+ (−A20,0 + A02,0)Q ′′1 /(2Q1)

]
,

A00,0 =
1

2ψ (1)
x21; A10,0 = −

(b0 + 4)
6ψ (2)

x31; A11,0 =
(b0 + 3)
12ψ (2)

x41; A01,0 = −
1

6ψ (1)
x31;

A20,0 =
(b20 + 7b0 + 18)
12ψ (3)

x41; A02,0 =
1

12ψ (1)
x41 with ψ(i) =

i∏
j=1

(b0 + j).

3. Convergence of the method

In this section we establish the fourth order accuracy of the method developed in the previous section for the boundary
value problems (1) and (2). Let G(Ỹ ) = (̃g1, . . . , g̃N)T, Ỹ = (ỹ1, . . . , ỹN)T, Q = (0, 0, . . . , 0, γ

βQN
)T and H (̃Y ) =

(b−1,1̃g0, 0, . . . , 0, (64/9)a1,N g̃N− 38 )
T, then the difference scheme (5)–(7) can be expressed in matrix form as

DỸ + PG(Ỹ )+ H(Ỹ ) = Q (18)

where D = (dij) and P = (pij) are (N × N) tridiagonal matrices with

dk,k+1 = −1/Jk, k = 1(1)(N − 1); dk,k = (1/Jk + 1/Jk−1) , k = 2(1)(N − 1)
dN,N = (1/JN−1 + α/(βQN)), d1,1 = −1/J1, dk,k−1 = −1/Jk−1, k = 2 (1)N

and

pk,k = b0,k, pk,k+1 = b1,k, k = 1 (1) (N − 1), pk,k−1 = b−1,k, k = 2 (1) (N − 1),
pN,N = a0,N , pN,N−1 = a−1,N .

Let Y = (y1, . . . , yN)T, T = (t̄1, t2, . . . , tN−1, t̄N)T, E = Ỹ − Y = (e1, . . . , eN)T, then the Eqs. (14)–(16) can be written as

DY + PG (Y )+ H (Y )+ T = Q . (19)

We may write

g̃0 − g0 = Ū0(̃y0 − ȳ0), g̃N− 38 − gN− 38 = ŪN− 38

(̃
yN− 38 − ȳN− 38

)
for some Ū0, ŪN− 38 and then from Eqs. (18) and (19) we get the error equation

(D+ PM +W ) E = T (20)

where

G(Ỹ )− G (Y ) = ME, M = diag {U1, . . . ,UN} (Uk = ∂ fk/∂yk ≥ 0);

H(Ỹ )− H (Y ) = WE,

whereW = (wij) is a matrix with

w1,1 = b−1,1Ū0

{
1−

x21U1
2(b0 + 1)

}
, wN,N−1 = a1,N ŪN− 38 , wN,N =

5
9
a1,N

(
11+

3hα
β

)
ŪN− 38

and all its other entries are zeros.
Now for fixed xk and for h→ 0, Jk is asymptotically equal (written as v) to hx−b0k Qk and is written by Jk v hx−b0k Qk .
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Similarly

B00,1 v 3hxb01 /(2Q1), B10,1 v −h2xb01 /(3Q1), B20,1 v 5h3xb01 /(12Q1),

B00,k v hxb0k /Qk , B10,k v −b0h3x
b0−1
k /(12Qk ), B20,k v h3xb0k /(6Qk ),

B01,k v −b0h3x
b0−1
k /(4Qk ), B02,k v h3xb0k /(2Qk ), B11,k v h3xb0k /(4Qk ),

A−00,N v h2/2, A−10,N v −h3/6, A−01,N v −h3/3, A−20,N v h4/12,

A−02,N v h4/4, A−11,N v h4/8.

Since

di,i+1 ≤ 0, di,i−1 ≤ 0 and
N∑
j=1

di,j

{
≥ 0, i = 2, 3, . . . , (N − 1)
> 0, i = 1,N

the matrix D is irreducible andmonotonic (from the corollary of Theorems 7.2 and 7.4 of [12]). Similarly it is easy to see that
D+ PM +W is also irreducible and monotonic as PM +W ≥ 0. Now from Theorem 7.1 of [12], D−1, and (D+ PM +W )−1

exist and are nonnegative, and from theorem 7.5 of [12] we get

(D+ PM +W )−1 ≤ D−1.
Let Z = (1, . . . , 1)T and S = (S1, . . . , SN)T = DZ , denote the vector of row-sums of D, and let V = (V1, . . . , VN)T where
Vj = (2β/α)+ 2− 1

2 (xj + 1)
2 and R = (R1, . . . , RN)T = DV . Since RN > 0 and for sufficiently small h

R1 > hb0/Q1,

Rk > (b0h/(2Qk)) x
b0−1
k , k = 2 (1) (N − 1)

then from D−1R = V we get

hb0d−1i,1 /Q1 < (2β/α)+ (3/2), i = 1 (1)N (21)

and

(b0h/2)
N−1∑
k=2

(d−1i,k /Qk)x
b0−1
k ≤ Vi < (2β/α)+ (3/2), i = 1 (1)N. (22)

Let g(i) for i = 0(1)3, xg(iv) and y′′′ be bounded on (0, 1] then for sufficiently small h∣∣t̄1∣∣ ≤ Ĉh4+b0/ |Q1| , (23)

|tk| ≤ Ch5x
b0−1
k / |Qk| , k = 1 (1) (N − 1) (24)

and ∣∣t̄N ∣∣ ≤ Ch4/ |QN | (25)

for suitable constants Ĉ , C and C .
Now since SN = α/(βQN) then from D−1S = Z we obtain

d−1i,N =
β

α
QN , i = 1 (1)N (26)

and thus from Eqs. (20)–(26) we get

|ei| ≤ d−1i,1
∣∣t1∣∣+ N∑

k=1

d−1i,k |tk| + d
−1
i,N

∣∣tN ∣∣ ≤ C∗h4
where C∗ = [(Ĉ/2+ C/b0)(4β/α + 3)+ C̄(β/α)] and hence it follows that

‖E‖∞ = O
(
h4
)
.

In the case of b0 = 1, 2, 3 the convergence of themethod can be established by taking the limits b0 → 1+, 2, 3 respectively.
Thus we have established the following result:

Theorem 1. Assume that f (x, y) satisfies (B) and p(x) satisfies the conditions in (A).Then, the finite difference method (5)–(7)
based on a uniformmesh applied to the boundary value problem (1) and (2)with b0 ≥ 0 is of fourth order accuracy for sufficiently
small h provided g(i) for i = 0(1)3, xg(iv) and y′′′ are bounded on (0, 1], where g(x) := f (x, y(x)).

Remark 1. Estimates for truncation errors (as given in (23)–(25)) are not proved but can be established on the basis of
explicit specification of coefficients given in the Appendix and under the assumptions that g(i) for i = 0(1)3, xg(iv) and y′′′
are bounded on (0, 1].
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Table 2
Numerical solution of physiological problems

x First problem Second problem
Numerical solution Numerical solution Numerical solution

α = β = 1 α = 0.1, β = 1
Fourth order Solution in [4] Fourth order Solution in [4] Fourth order Solution in [7]

0.0 0.82848 0.82848 0.36752 0.36734 1.14704 1.14700
0.5 0.85906 0.85906 0.33841 0.33828 1.13375 1.13373
1.0 0.95095 0.95094 0.24793 0.24783 1.09325 1.09323

4. Numerical illustration

To illustrate the convergence and to corroborate the order of convergence of the method we consider the following
singular two point boundary value problem

(xb0exy′)′ = 5exxb0+3(5x5ey − (b0 + 4)− x)/(4+ x5)
y′(0) = 0, y(1)+ 5y′(1) = ln(1/5)− 5

with exact solution y(x) = ln(1/(4+ x5)). Maximum absolute errors and order of convergence (accuracy) for this problem
have been displayed in Table 1 which show that the method works well for all finite values of b0 and is of fourth order
accuracy.
Two physiological problems are solved using this fourth order method. The first problem is an example of oxygen

diffusion corresponding to (1) and (2) with f (x, y) given in (3) and p (x) = x2, θ = 0.76129, κ = 0.03119, β = 1 and
α = γ = 5 and the results are displayed in Table 2 (First Problem).
The second problem is an example of a non-linear heat conduction model of the human head, which corresponds to (1)

and (2) with f (x, y) given in (4) and p (x) = x2, δ = 1, θ = 1 and γ = 0. We have performed calculations for the following
two cases

(i) α = β = 1
(ii) α = 0.1, β = 1

for comparison purposes and display the results in Table 2 (Second Problem). These results are in good agreement with
those of [4,7].

Remark 2. For physiological problems the true solution is not available.
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Appendix

The coefficients ai,j, bi,j used in the Eqs. (5)–(7) are given as follows:

b±1,1 =
1
2h
[±B10,1 + B20,1/h∓ (B20,1 − A+11,1/J1)Q

′

1/Q1],

b0,1 = B00,1 − B20,1/h2 + (−B10,1 + A+01,1/J1)Q
′

1/Q1 + (B20,1 − A
+

11,1/J1)(Q
′

1/Q1)
2
+ (−B20,1 + A+02,1/J1)Q

′′

1 /(2Q1),

b±1,k =
1
2h
[±B10,k + B20,k/h∓ (B20,k − B11,k)(Q ′k/Qk)],

b0,k = B00,k − B20,k/h2 + (B01,k − B10,k)(Q ′k/Qk)+ (B20,k − B11,k)(Q
′

k/Qk)
2
+ (B02,k − B20,k)(Q ′′k /(2Qk))

a±1,N = ∓
3

5hJN−1

[
A−10,N +

(11∓ 5)
6h

A−20,N + (−A
−

20,N + A
−

11,N)Q
′

N/QN

]
,

a0,N =
1
JN−1

[
A−00,N +

11
3h
A−10,N +

8
3h2
A−20,N +

(
−A−10,N + A

−

01,N −
11
3h
A−20,N +

11
3h
A−11,N

)
Q ′N/QN

+ (A−20,N − A
−

11,N)(Q
′

N/QN)
2
+ (A−02,N − A

−

20,N)Q
′′

N/(2QN)
]
,
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where

Bm0,1 = (A+m0,1/J1 + A
−

m0,1/Q1), m = 0 (1) 2;

B0m,k = (A+0m,k/Jk + A
−

0m,k/Jk−1), m = 0 (1) 2;

B1m,k = (A+1m,k/Jk + A
−

1m,k/Jk−1), m = 0, 1;

B20,k = (A+20,k/Jk + A
−

20,k/Jk−1),

and

A±00,k = [−(x
2
k±1 − x

2
k)/2+ µ

±

00,k]/φ (1) ,

A±10,k =
[
±
h3

6
−
h2

2
xk±1 ±

h
ψ (1)

x2k±1 − µ
±

10,k

]/
φ (1) ,

A±20,k =
[
h4

12
∓
h3

3
xk±1 +

h2

ψ (1)
x2k±1 ∓

2h
ψ (2)

x3k±1 + µ
±

20,k

]/
φ (1) ,

A±01,k =
[
±
h3

6
−
h2

2
xk±1 ± hµ±00,k

]/
φ (1)+

[
1
3
(x3k±1 − x

3
k)− µ

±

01,k

]/
φ (2) ,

A±02,k =
[
h4

12
∓
h3

3
xk±1 + h2µ±00,k

]/
φ (1)+

[
h4

6
∓
2h3

3
xk±1 + h2x2k±1 ∓ 2hµ

±

01,k

]/
φ (2)

+

[
−
1
2
(x4k±1 − x

4
k)+ µ

±

02,k

]/
φ (3) ,

A±11,k =
[
h4

12
∓
h3

3
xk±1 +

h2

ψ (1)
x2k±1 ∓ hµ

±

10,k

]/
φ (1)+

[
h4

12
∓
h3

3
xk±1 +

h2

2
x2k±1 ∓

h
ψ (1)

x3k±1 + µ
±

11,k

]/
φ (2) ,

A−00,1 = x
b0+1
1 /ψ (1) , A−10,1 = −x

b0+2
1 /ψ (2) , A−20,1 = 2x

b0+3
1 /ψ (3) ,

with

µ±ij,k = i!j!x
j+1−b0
k±1 (xb0+1+ik±1 − xb0+1+ik )/ψ(1+ i),

φ(i) =
i∏
j=1

(j− b0) and ψ(i) =
i∏
j=1

(b0 + j).

A.1. Coefficients in the case b0 = 1

The difference scheme for b0 = 1 can be obtained by taking limit b0 → 1+ and the coefficients for this case are same as
given above except for the following which are obtained by taking the limit b0 → 1+.

A±00,k =
1
4
[(x2k±1 − x

2
k)− 2x

2
k ln(xk±1/xk)],

A±10,k =
1
36
[±h(4x2k±1 − 5xk±1xk − 5x

2
k)+ 6x

3
k ln(xk±1/xk)],

A±01,k =
1
12
[±h(2x2k±1 − xk±1xk − 7x

2
k)+ 6x

3
k ln(xk±1/xk)],

A±20,k =
1
72

[
18h2x2k±1 ∓ 20hx

3
k±1 +

13
2
(x4k±1 − x

4
k)− 6x

4
k ln(xk±1/xk)

]
,

A±11,k =
1
36
[−3h4 ± 12h3xk±1 − h2(12x2k±1 + 4xk±1xk + 5x

2
k)± 6hx

3
k±1 − 6x

4
k ln(xk±1/xk)],

A±02,k =
1
24
[−4h4 ± 16h3xk±1 − 24h2x2k±1 ± 3h(5x

3
k±1 − 3x

2
k±1xk − 3xk±1x

2
k + 5x

3
k)− 12x

4
k ln(xk±1/xk)],

A−00,1 =
1
2
x21; A−10,1 = −

1
6
x31; A−20,1 =

1
12
x41.

A.2. Coefficients in the cases b0 = 2 and b0 = 3

In a similar fashion the difference scheme for b0 = 2 can be obtained by taking the limit b0 → 2 and the coefficients
different from the general case are as follows:
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A±01,k =
1
18
[∓3h3 + 9h2xk±1 ∓ 6h(x2k±1 − x

3
k/xk±1)+ 2(x

3
k±1 − x

3
k)− 6x

3
k ln(xk±1/xk)],

A±11,k =
1
72

[
−6h4 ± 24h3xk±1 − 24h2x2k±1 ± 2h(7x

3
k±1 − 3x

4
k/xk±1)−

7
2
(x4k±1 − x

4
k)+ 6x

4
k ln(xk±1/xk)

]
,

A±02,k =
1
36
[−3h4 ± 12h3xk±1 − 12h2(x2k±1 − x

3
k/xk±1)± 8h(x

3
k±1 − 3x

3
k)− 2(x

4
k±1 − x

4
k)+ 24x

4
k ln(xk±1/xk)].

Similarly for b0 = 3 only the coefficient A±02,k is different from the general case and is given as:

A±02,k =
1
48
[2h4 ∓ 8h3xk±1 + 6h2(3x2k±1 + x

4
k/x

2
k±1)∓ 12h(x

3
k±1 − x

4
k/xk±1)+ 3(x

4
k±1 − x

4
k)+ 12x

4
k ln(xk±1/xk)].
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