304 research outputs found

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    Dynamic bandwidth management with service differentiation over ethernet passive optical networks

    Get PDF
    Ethernet passive optical networks (EPONs) address the first mile of the communication infrastructure between the service provider central offices and the customer sites. As a low-cost, high speed technology, EPONs are deemed as the solution to the bottleneck problem of the broadband access network. A major feature of EPONs is the utility of a shared upstream channel among the end users. Only a single optical network unit (GNU) may transmit during a timeslot to avoid data collisions. In order to provide diverse quality of service (QoS), the bandwidth management of the upstream channel is essential for the successful implementation of EPONs, and thus, an efficient medium access control is required to facilitate statistical multiplexing among local traffics. This dissertation addresses the upstream bandwidth allocation over EPONs. An efficient mechanism, i.e., limited sharing with traffic prediction (LSTP), has been proposed to arbitrate the upstream bandwidth among ONUs. The MultiPoint Control Protocol (MPCP) messages, which are stipulated by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force, are adopted by LSTP to facilitate the dynamic bandwidth negotiation between an GNU and the OLT. The bandwidth requirement of an ONU includes the already enqueued frames and the predicted incoming frames during the waiting time. The OLT arbitrates the bandwidth assignment based on the queue status report from an GNU, the traffic prediction, and the agreed service contract. With respect to the performance evaluation, theoretical analysis on the frame loss, the frame delay, and the queue length has been conducted. The quantitative results demonstrate that 1) the innovative LSTP mechanism dynamically allocates the upstream bandwidth among multiple ONUs; 2) the traffic predictor at the OLT delivers satisfactory prediction for the bursty self-similar traffic, and thereby, contributing to the reduction of frame loss, frame delay, and queue length; and 3) the bandwidth arbitration at the OLT effectively restricts the aggressive bandwidth competition among ONUs by adopting the service level agreement (SLA) parameter as the upper bound. Aside from analysis, the LSTP mechanism has been substantiated by experimental simulations. In order to differentiate the service provisioning among diverse users, LSTP is further enhanced with the support of dynamic bandwidth negotiation based on multiple queues. The incoming traffics are first classified into three classes, and then enqueued into the corresponding queues. A traffic predictor is dedicated to one class of traffic from an GNU. Service differentiation among classes are provided by the combination of queuing and scheduling at the GNU side. At the OLT side, the bandwidth allocation for each class of traffic is based on the reported queue status and the traffic prediction, and is upper-bounded by the SLA parameter. Experimental simulations have justified the feasibility of providing service differentiation over the broadband EPONs

    ANALYSIS OF DATA & COMPUTER NETWORKS IN STUDENTS' RESIDENTIAL AREA IN UNIVERSITI TEKNOLOGI PETRONAS

    Get PDF
    In Universiti Teknologi Petronas (UTP), most of the students depend on the Internet and computer network connection to gain academics information and share educational resources. Even though the Internet connections and computers networks are provided, the service always experience interruption, such as slow Internet access, viruses and worms distribution, and network abuse by irresponsible students. Since UTP organization keeps on expanding, the need for a better service in UTP increases. Several approaches were put into practice to address the problems. Research on data and computer network was performed to understand the network technology applied in UTP. A questionnaire forms were distributed among the students to obtain feedback and statistical data about UTP's network in Students' Residential Area. The studies concentrate only on Students' Residential Area as it is where most of the users reside. From the survey, it can be observed that 99% of the students access the network almost 24 hours a day. In 2005, the 2 Mbps allocated bandwidth was utilized 100% almost continuously but in 2006, the bottleneck of Internet access has reduced significantly since the bandwidth allocated have been increased to 8 Mbps. Server degradation due to irresponsible acts by users also adds burden to the main server. In general, if the proposal to ITMS (Information Technology & Media Services) Department for them to improve their Quality of Service (QoS) and established UTP Computer Emergency Response Team (UCert), most of the issues addressed in this report can be solved

    Multichannel optical access networks : design and resource management

    Get PDF
    At present there is a strong worldwide push towards bringing fiber closer to individual homes and businesses. The next evolutionary step is the cost-effective all-optical integration of fiber-based access and metro networks. STARGATE [1] is an all-optical access-metro architecture which does not rely on costly active devices, e.g., Optical Cross-Connects (OXCs) or Fixed Wavelength Converters (FWCs), and allow low-cost PON technologies to follow low-cost Ethernet technologies from EPON access into metro networks, resulting in significantly reduced cost and complexity. It makes use of an overlay island of transparency with optical bypassing capabilities. In this thesis we first propose Optical Network Unit (ONU) architectures, and discuss several technical challenges, which allow STARGATE EPONs (SG-EPONs) to evolve in a pay-as-you-grow manner while providing backward compatibility with legacy infrastructure and protecting previous investment. Second, and considering all the hardware constraints, we present the corresponding dynamic bandwidth allocation algorithm for effective resource management in these networks and investigate their performances (delay, throughput) through simulation experiments. We further investigate the problem of transmission grant scheduling in multichannel optical access networks using a scheduling theoretic approach. We show that the problem can be modeled as an Open Shop and we formulate the joint scheduling and wavelength assignment problem as a Mixed Integer Linear Program (MJLP) whose objective is to reduce the length of a scheduling period. Since the problem is known to be NP-hard, we introduce a Tabu Search based heuristic for solving the joint problem. Different other heuristics are also considered and their performances are compared with those of Tabu and MILP. Results indicate that by appropriately scheduling transmission grants and assigning wavelengths, substantial and consistent improvements may be obtained in the network performance. For example, Tabu shows a reduction of up to 29% in the schedule length with substantial reduction in channel idle gaps yielding to both higher channel utilization and lower queuing delays. Additionally, when the number of channels in the network is not small, the benefits of performing appropriate wavelength assignment, together with transmission scheduling, are observed and discussed. We further perform a packet-level simulation on the considered network to study the benefits of efficient grant scheduling; significant improvements are shown both in terms of system utilization and packet queuing delays

    Dynamic bandwidth allocation algorithms for differentiated services enabled Ethernet Passive Optical Networks with centralized admission control

    Get PDF
    Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that has emerged in recent years is Ethernet Passive Optical Networks. The key features of this approach are the simplicity of the architecture and compatibility with existing Ethernet based local area networks. To make Ethernet Passive Optical Networks (EPONs) a fully functional part of the telecommunication system, support for classes of traffic with different Quality of Service (QoS) requirements is mandatory. Much research has been done on the optimal bandwidth allocation algorithms that would have the capability of supporting Differentiated Services (DiffServ) in EPONs. This thesis proposes that the access control mechanism should be centralized and performed by the Optical Line Terminal (OLT). It is shown that this approach can give greater flexibility to adjust to changing traffic conditions, can simplify the structure of the Optical Network Units, and can allow the easy adoption of Service Level Agreements. This thesis introduces a novel EPON simulator that allows testing of various types of bandwidth allocation algorithms. It is possible to evaluate the allocation mechanism under different traffic conditions and with network configurations that closely resemble real systems. New algorithms are presented based on a paradigm of centralized access control. Simulation results showed that they offer good performance and support for the DiffServ architecture
    corecore