25,437 research outputs found

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041

    Finding Academic Experts on a MultiSensor Approach using Shannon's Entropy

    Full text link
    Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework

    Broad expertise retrieval in sparse data environments

    Get PDF
    Expertise retrieval has been largely unexplored on data other than the W3C collection. At the same time, many intranets of universities and other knowledge-intensive organisations offer examples of relatively small but clean multilingual expertise data, covering broad ranges of expertise areas. We first present two main expertise retrieval tasks, along with a set of baseline approaches based on generative language modeling, aimed at finding expertise relations between topics and people. For our experimental evaluation, we introduce (and release) a new test set based on a crawl of a university site. Using this test set, we conduct two series of experiments. The first is aimed at determining the effectiveness of baseline expertise retrieval methods applied to the new test set. The second is aimed at assessing refined models that exploit characteristic features of the new test set, such as the organizational structure of the university, and the hierarchical structure of the topics in the test set. Expertise retrieval models are shown to be robust with respect to environments smaller than the W3C collection, and current techniques appear to be generalizable to other settings

    Voting for candidates: adapting data fusion techniques for an expert search task

    Get PDF
    In an expert search task, the users' need is to identify people who have relevant expertise to a topic of interest. An expert search system predicts and ranks the expertise of a set of candidate persons with respect to the users' query. In this paper, we propose a novel approach for predicting and ranking candidate expertise with respect to a query. We see the problem of ranking experts as a voting problem, which we model by adapting eleven data fusion techniques.We investigate the effectiveness of the voting approach and the associated data fusion techniques across a range of document weighting models, in the context of the TREC 2005 Enterprise track. The evaluation results show that the voting paradigm is very effective, without using any collection specific heuristics. Moreover, we show that improving the quality of the underlying document representation can significantly improve the retrieval performance of the data fusion techniques on an expert search task. In particular, we demonstrate that applying field-based weighting models improves the ranking of candidates. Finally, we demonstrate that the relative performance of the adapted data fusion techniques for the proposed approach is stable regardless of the used weighting models

    University of Twente at the TREC 2008 Enterprise Track: using the Global Web as an expertise evidence source

    Get PDF
    This paper describes the details of our participation in expert search task of the TREC 2007 Enterprise track.\ud This is the fourth (and the last) year of TREC 2007 Enterprise Track and the second year the University of Twente (Database group) submitted runs for the expert nding task. In the methods that were used to produce these runs, we mostly rely on the predicting potential of those expertise evidence sources that are publicly available on the Global Web, but not hosted at the website of the organization under study (CSIRO). This paper describes the follow-up studies\ud complimentary to our recent research [8] that demonstrated how taking the web factor seriously signicantly improves the performance of expert nding in the enterprise

    Using the Global Web as an Expertise Evidence Source

    Get PDF
    This paper describes the details of our participation in expert search task of the TREC 2007 Enterprise track. The presented study demonstrates the predicting potential of the expertise evidence that can be found outside of the organization. We discovered that combining the ranking built solely on the Enterprise data with the Global Web based ranking may produce significant increases in performance. However, our main goal was to explore whether this result can be further improved by using various quality measures to distinguish among web result items. While, indeed, it was beneficial to use some of these measures, especially those measuring relevance of URL strings and titles, it stayed unclear whether they are decisively important

    Entity Ranking on Graphs: Studies on Expert Finding

    Get PDF
    Todays web search engines try to offer services for finding various information in addition to simple web pages, like showing locations or answering simple fact queries. Understanding the association of named entities and documents is one of the key steps towards such semantic search tasks. This paper addresses the ranking of entities and models it in a graph-based relevance propagation framework. In particular we study the problem of expert finding as an example of an entity ranking task. Entity containment graphs are introduced that represent the relationship between text fragments on the one hand and their contained entities on the other hand. The paper shows how these graphs can be used to propagate relevance information from the pre-ranked text fragments to their entities. We use this propagation framework to model existing approaches to expert finding based on the entity's indegree and extend them by recursive relevance propagation based on a probabilistic random walk over the entity containment graphs. Experiments on the TREC expert search task compare the retrieval performance of the different graph and propagation models
    • ā€¦
    corecore