19,741 research outputs found

    An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    Get PDF
    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as energy-efficient. To find an energy-efficient solution for the communication network we analyze three wireless applications. Based on their communication requirements we observe that revisiting of the circuit switching techniques is beneficial. In this paper we propose a new energy-efficient reconfigurable circuit-switched Network-on-Chip. By physically separating the concurrent data streams we reduce the overall energy consumption. The circuit-switched router has been synthesized and analyzed for its power consumption in 0.13 ¿m technology. A 5-port circuit-switched router has an area of 0.05 mm2 and runs at 1075 MHz. The proposed architecture consumes 3.5 times less energy compared to its packet-switched equivalen

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Exploration within the Network-on-Chip Paradigm

    Get PDF
    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational clock frequency, it became impossible to reach every function within the chip in a single clock cycle. Furthermore, centralized control becomes hard with the increase in functionality. This lead to the split of the processing into a set of independent processing cores integrated into a single chip.\ud These multi-core architectures will rely on a well designed on-chip communication architecture. Global wires and bus-based systems need to be replaced to overcome the problem of wiring and the single point of arbitration. This is introduced as the Network-on-Chip (NoC) paradigm. Most of the communication architectures classified as a NoC are a network of routers on-chip, but the paradigm embodies a broader scope. The paradigm enables the sharing of on-chip wiring resources for multiple communication streams to reduce the total wiring required. Furthermore, it enables concurrent communication of concurrently handled data packets. The latter is in contrast to the central arbitration and single communication channel in bus-based systems.\ud In this thesis we explore the paradigm by implementation and characterization of multiple NoC router architectures. The scope of the communication architecture is the embedding in a heterogeneous multi-core System-on-Chip (SoC) for streaming applications. Six streaming applications, which are used in mobile devices, are analysed. Their common communication characteristics and specific bandwidth requirements are presented. One of the major constraints of these applications is the requirement of Quality of Service (QoS) for the interprocess communication.\ud \ud Based on application analysis we propose a circuit switched router architecture as opposed to a more flexible packet switched router architecture. The reason for this architecture is the observation that communication patterns in the applications are static. The circuit switched network is integrated in an ARM based heterogeneous reconfigurable multi-core SoC realized in a 0.13 μm CMOS technology.\ud \ud Besides this architecture, an existing packet switched router architecture, that also offers QoS, is improved and compared with the circuit switched router. Next to the exploration of those two router designs, two other packet switched routers, designed at the University of Cambridge, are included in the in-depth comparison. The four routers are placed and routed in 90 nm CMOS technology. The required buffering dominates the resource usage of all packet switched routers, which is significantly reduced in a circuit switched architecture. However, the latter pays a penalty by a larger required crossbar and reduced flexibility.\ud \ud The four routers are also compared for their latency performance and energy consumption. For latency the packet switched networks are simulated with popular synthetic traffic scenarios. The circuit switched router has a deterministic latency, due to the congestion free routes.\ud \ud The latency analysis shows the higher network utilization for NoCs using virtual channel flow control over wormhole flow control. Furthermore, the allocation mechanisms used in the improved packet switched router, cause a higher latency for randomly distributed packets compared to the router with speculation logic that is tailored for this type of traffic. Despite its higher latency for random traffic, the packet switched network is able to give end-to-end latency guarantees for specific connections, due to deterministic arbitration, as is shown in this thesis.\ud For the power analysis we compared the four routers using various traffic scenarios. One of the first observations is a high power consumption in idle mode, where no data is transported. The clock-tree and the connected synchronous elements consume the majority of the power. A minor part is the static power, which is directly related to the router's required chip area. Automatic insertion of fine-grain clock gating tremendously reduces this idle dynamic power consumption. With clock-gating, both the static and dynamic component have an equal share in the idle power at a clock frequency of 200 MHz.\ud \ud The increase in dynamic power consumption is directly related to the number of packets that are transported over the network and the amount of bit flips, i.e. activity, in the payload. Transportation of random payload, i.e. 25% activity, requires almost a factor three more in comparison with a payload of constant values, i.e. all bits inactive. Random activity is observed in the analysed streaming applications for most of the intermediate data. The buffer size has no influence on the packet's dynamic energy consumption, due to the fine-grain clock gating, which makes the packet switched routers as energy efficient as the circuit switched router. Most of the difference in energy consumption between the routers, is caused by the different crossbar dimensions and the extra bits in a packet which are required for routing and allocation. The larger crossbar is required for the circuit switched router to add flexibility, and for the improved packet switched router to enable QoS. A marginal increase in energy consumption is caused by the network congestion.\ud \ud During the design of the heterogeneous SoC architecture as well as the evaluation of the packet switched routers, we were hampered by the prohibitive simulation times of the architecture's bit and cycle accurate models. Motivated by simulation speed-ups of an FPGA in a Hardware-in-the-Loop (HIL) simulation, we developed a framework to simulate large many-core architectures on a single FPGA. Instead of the instantiation of the whole architecture in parallel in the FPGA, the individual cores are evaluated sequentially. Each core is modified such that the core's internal state and combinational functionality are separated.\ud \ud As all cores in a homogeneous many-core architecture are identical, we can construct a single hyper core, that embodies all combinational functionality of a single core. The state of the whole architecture, stored in the FPGA's memory blocks, is updated sequentially by offering a core's old state to the hyper core and store its new state. Using the sequential simulation approach in an FPGA, we are able to simulate two to three orders of magnitude faster compared to cycle and bit-accurate simulations in software.\u

    Energy Model of Networks-on-Chip and a Bus

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both NoC architectures to predict their energy consumption per transported bit. Both architectures are also compared with a traditional bus architecture. The energy model is primarily needed to find a near optimal run-time mapping (from an energy point of view) of inter-process communication to NoC link

    Towards An Optimal Core Optical Network Using Overflow Channels

    Get PDF
    This dissertation is based on a traditional circuit switched core WDM network that is supplemented by a pool of wavelengths that carry optical burst switched overflow data. These overflow channels function to absorb channel overflows from traditional circuit switched networks and they also provide wavelengths for newer, high bandwidth applications. The channel overflows that appear at the overflow layer as optical bursts are either carried over a permanently configured, primary light path, or over a burst-switched, best-effort path while traversing the core network. At every successive hop along the best effort path, the optical bursts will attempt to enter a primary light path to its destination. Thus, each node in the network is a Hybrid Node that will provide entry for optical bursts to hybrid path that is made of a point to point, pre-provisioned light path or a burst switched path. The dissertation's main outcome is to determine the cost optimality of a Hybrid Route, to analyze cost-effectiveness of a Hybrid Node and compare it to a route and a node performing non-hybrid operation, respectively. Finally, an example network that consists of several Hybrid Routes and Hybrid Nodes is analyzed for its cost-effectiveness. Cost-effectiveness and optimality of a Hybrid Route is tested for its dependency on the mean and variance of channel demands offered to the route, the number of sources sharing the route, and the relative cost of a primary and overflow path called path cost ratio. An optimality condition that relates the effect of traffic statistics to the path cost ratio is analytically derived and tested. Cost-effectiveness of a Hybrid Node is compared among different switching fabric architecture that is used to construct the Hybrid Node. Broadcast-Select, Benes and Clos architectures are each considered with different degrees of chip integration. An example Hybrid Network that consists of several Hybrid Routes and Hybrid Nodes is found to be cost-effective and dependent of the ratio of switching to transport costs

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    Energy-Efficient NoC for Best-Effort Communication

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture forMulti-Processor System-on-Chip (MPSoC) architectures. In an earlier paper we proposed a energy-efficient reconfigurable circuit-switched NoC to reduce the energy consumption compared to a packetswitched NoC. In this paper we investigate a chordal slotted ring and a bus architecture that can be used to handle the best-effort traffic in the system and configure the circuitswitched network. Both architectures are compared on their latency behavior and power consumption. At the same clock frequency, the chordal ring has the major benefit of a lower latency and higher throughput. But the bus has a lower overall power consumption at the same frequency. However, if we tune the frequency of the network to meet the throughput requirements of control network, we see that the ring consumes less energy per transported bit

    Hybrid Router Design for High Performance Photonic Network-On-Chip

    Get PDF
    With rising density of cores in Chip-Multiprocessors, traditional metallic interconnects won't be able to cater to the high demand in communication bandwidth at lower power consumption. Photonic interconnects are emerging as a very competitive and promising alternative to address these bottlenecks in recent times. The infrastructure for realizing such a communication architecture comprises of Micro Ring-resonator based silicon nano-photonic routers and waveguides. We propose a novel 5x5 photonic router microarchitecture employing mode-division-multiplexing along with wavelength-division-multiplexing and time-division-multiplexing. It increases the aggregate bandwidth almost four times in a network consuming almost 30% less power as compared to other recent photonic routers and laying the foundation of a high performance photonic network-on-chip(PNoC). We validated the feasibility of the proposed architecture and developed a new circuit switched based network simulator(PhotoNoxim) based on the router microarchitecture proposed by us to validate it under various synthetic traffics and benchmark applications

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031
    corecore