573 research outputs found

    Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers

    Get PDF
    We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra "helper" modules ("musketeers") suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n^2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive "sliding" moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    Addressing Tasks Through Robot Adaptation

    Get PDF
    Developing flexible, broadly capable systems is essential for robots to move out of factories and into our daily lives, functioning as responsive agents that can handle whatever the world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments by transforming themselves. By rearranging the connective structure of their component robot modules, these systems can assume different morphologies: for example, a cluster of modules might configure themselves into a car to maneuver on flat ground, a snake to climb stairs, or an arm to pick and place objects. Conversely, environment augmentation is a strategy in which the robot transforms its environment to meet its own needs, adding physical structures that allow it to overcome obstacles. In both areas, the presented work includes elements of hardware design, algorithms, and integrated systems, with the common goal of establishing these methods of adaptation as viable strategies to address tasks. The research takes a systems-level view of robotics, placing particular emphasis on experimental validation in hardware

    EMERGE Modular Robot: A Tool for Fast Deployment of Evolved Robots

    Get PDF
    This work presents a platform for evolution of morphology in full cycle reconfigurable hardware: The EMERGE (Easy Modular Embodied Robot Generator) modular robot platform. Three parts necessary to implement a full cycle process, i.e., assembling the modules in morphologies, testing the morphologies, disassembling modules and repeating, are described as a previous step to testing a fully autonomous system: the mechanical design of the EMERGE module, extensive tests of the modules by first assembling them manually, and automatic assembly and disassembly tests. EMERGE modules are designed to be easy and fast to build, one module is built in half an hour and is constructed from off-the-shelf and 3D printed parts. Thanks to magnetic connectors, modules are quickly attached and detached to assemble and reconfigure robot morphologies. To test the performance of real EMERGE modules, 30 different morphologies are evolved in simulation, transferred to reality, and tested 10 times. Manual assembly of these morphologies is aided by a visual guiding tool that uses AprilTag markers to check the real modules positions in the morphology against their simulated counterparts and provides a color feedback. Assembly time takes under 5 min for robots with fewer than 10 modules and increases linearly with the number of modules in the morphology. Tests show that real EMERGE morphologies can reproduce the performance of their simulated counterparts, considering the reality gap. Results also show that magnetic connectors allow modules to disconnect in case of being subjected to high external torques that could damage them otherwise. Module tracking combined with their easy assembly and disassembly feature enable EMERGE modules to be also reconfigured using an external robotic manipulator. Experiments demonstrate that it is possible to attach and detach modules from a morphology, as well as release the module from the manipulator using a passive magnetic gripper. This shows that running a completely autonomous, evolution of morphology in full cycle reconfigurable hardware of different topologies for robots is possible and on the verge of being realized. We discuss EMERGE features and the trade-off between reusability and morphological variability among different approaches to physically implement evolved robots

    3D reconfiguration using graph grammars for modular robotics

    Get PDF
    The objective of this thesis is to develop a method for the reconfiguration of three-dimensional modular robots. A modular robot is composed of simple individual building blocks or modules. Each of these modules needs to be controlled and actuated individually in order to make the robot perform useful tasks. The presented method allows us to reconfigure arbitrary initial configurations of modules into any pre-specified target configuration by using graph grammar rules that rely on local information only. Local in a sense that each module needs just information from neighboring modules in order to decide its next reconfiguration step. The advantage of this approach is that the modules do not need global knowledge about the whole configuration. We propose a two stage reconfiguration process composed of a centralized planning stage and a decentralized, rule-based reconfiguration stage. In the first stage, paths are planned for each module and then rewritten into a ruleset, also called a graph grammar. Global knowledge about the configuration is available to the planner. In stage two, these rules are applied in a decentralized fashion by each node individually and with local knowledge only. Each module can check the ruleset for applicable rules in parallel. This approach has been implemented in Matlab and currently, we are able to generate rulesets for arbitrary homogeneous input configurations.MSCommittee Chair: Magnus Egerstedt; Committee Member: Jeff Shamma; Committee Member: Patricio Antonio Vel

    Meso-Scale Digital Materials: Modular, Reconfigurable, Lattice-Based Structures

    Get PDF
    We present a modular, reconfigurable system for building large structures. This system uses discrete lattice elements, called digital materials, to reversibly assemble ultralight structures that are 99.7% air and yet maintain sufficient specific stiffness for a variety of structural applications and loading scenarios. Design, manufacturing, and characterization of modular building blocks are described, including struts, nodes, joints, and build strategies. Simple case studies are shown using the same building blocks in three different scenarios: a bridge, a boat, and a shelter. Field implementation and demonstration is supplemented by experimental data and numerical simulation. A simplified approach for analyzing these structures is presented which shows good agreement with experimental results
    • …
    corecore