

Edinburgh Research Explorer

A characterization of the reconfiguration space of self-
reconfiguring 	robotic systems

Citation for published version:
Larkworthy, T & Ramamoorthy, S 2011, 'A characterization of the reconfiguration space of self-reconfiguring
robotic systems' Robotica, vol. 29, no. Special Issue 1, pp. 73-85. DOI: 10.1017/S0263574710000718

Digital Object Identifier (DOI):
10.1017/S0263574710000718

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Robotica

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0263574710000718
https://www.research.ed.ac.uk/portal/en/publications/a-characterization-of-the-reconfiguration-space-of-selfreconfiguring-robotic-systems(b795e67a-3980-48e5-be62-ecb2cc70a24c).html

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

Robotica (2011) volume 29, pp. 73–85. © Cambridge University Press 2011
doi:10.1017/S0263574710000718

A characterization of the reconfiguration space
of self-reconfiguring robotic systems
Tom Larkworthy∗ and Subramanian Ramamoorthy
Institute of Perception, Action and Behaviour, School of Informatics,University of Edinburgh, 10 Crichton Street, Edinburgh
EH8 9AB email: tom.larkworthy@gmail.com (corresponding), s.ramamoorthy@ed.ac.uk

(Received in Final Form: October 28, 2010)

SUMMARY
Motion planning for self-reconfiguring robots can be made
efficient by exploiting potential reductions to suitably
large subspaces. However, there are no general techniques
for identifying suitable restrictions that have a positive
effect on planning efficiency. We present two approaches
to understanding the structure that is required of the
subspaces, which leads to improvement in efficiency of
motion planning. This work is presented in the context
of a specific motion planning procedure for a hexagonal
metamorphic robot. First, we use ideas from spectral graph
theory – empirically estimating the algebraic connectivity
of the state space – to show that the HMR model is better
structured than many alternative motion catalogs. Secondly,
using ideas from graph minor theory, we show that the
infinite sequence of subspaces generated by configurations
containing increasing numbers of subunits is well ordered,
indicative of regularity of the space as complexity increases.
We hope that these principles could inform future algorithm
design for many different types of self-reconfiguring robotics
problems.

KEYWORDS: Self-reconfiguring robotics; Motion plan-
ning; Graph theory.

1. Introduction
Self-reconfiguring systems (SRSs) are robots comprised of
a collection of robotic subunits that can physically connect
and disconnect from one another. Through collaboration, the
aggregate is capable of changing its morphology on demand.
Such systems offer versatility unparalleled by monolithic
robot solutions. However, one can only exploit the flexibility
offered by SRSs if algorithms exist that can efficiently
synthesize plans to change from one configuration to another.
So far, developing efficient algorithms has proved difficult,
particularly when there are many subunits to coordinate, and
intricate local constraints to consider.

In this paper, we consider a specific reconfiguration
architecture, the hexagonal metamorphic robot (HMR). This
architecture is simple to describe, yet captures many of the
difficulties in planning for an SRS. We present an algorithm
that, for a specific subspace of the Claytronics HMR state
space (to be explained later) called the Surface space, is
capable of solving tasks in near linear time on average. A
goal is to synthesize plans for the difficult Claytronics HMR

* Corresponding author. E-mail: tom.larkworthy@gmail.com

state space. In prior work, the planner presented here was
combined with an additional planner, the combination of
which solved up to 95% of shape reconfiguration tasks in
linear time, on average, for tasks involving up to 20,000
units.12

This paper aims to explore why some reconfiguration
state spaces are easier to plan within, and in particular,
how these easy planning spaces can be found contained
within harder state spaces. We will use the Surface space
as an example of an “easy” state space that can be found
within a number of possible “hard” state spaces of the HMR.
We demonstrate that the subspace is well connected (in a
sense to be made precise), which is why planning tasks
can be solved efficiently using greedy methods with a low
probability of failure. We test this hypothesis by utilizing a
sampling-based method to estimate quantitative descriptors
of the algebraic connectivity of the state space. We compare
the results from this specialized subspace against a more
general model of HMR reconfiguration, and discover a
striking qualitative difference in the behavior of the algebraic
connectivity as the number of subunits in the configuration
grows. The implication is that the Surface space contains
few bottlenecks, even when there are high numbers of
subunits.

A second desirable property of the Surface space is
that the different instances of the reconfiguration space,
corresponding to incremental addition of a module, are well
ordered in a specific sense. Specifically, we prove that the
reconfiguration graphs at increasing levels of complexity
are ordered by the graph minor relation, in a way that
seems to extend the notion of metamodularization. Ordering
by graph minors explains why certain SRS models can be
solved recursively in a particularly simple and efficient way.
We hope that these ideas might inspire further analysis of
the global structure of reconfiguration spaces and algorithm
designs.

While the specific results of this paper are phrased in the
context of the study of a specific algorithm for a specific
model of a SRS, the quantitative and analytical tools can be
applied to any SRS, to explain when and why a subspace of a
reconfiguration space for an SRS may be good to plan within,
providing tools for characterizing and evaluating a subspace’s
suitability for efficient planning. In future work, we hope that
these tools can be utilized to develop automated methods
for identification of useful subspaces and other abstractions,
to seed the development of SRS planning algorithms for
different SRS architectures.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

74 A characterization of the reconfiguration space of self-reconfiguring robotic systems

2. Preliminaries
Let P denote the set of points on a hexagonal lattice, L.
The metric d : P × P �→ Z is defined as the Manhattan hex
distance (see ref. [3] for details). We say two locations, x1 ∈ P

and x2 ∈ P are adjacent as isAdj (x1, x2) ⇔ d(x1, x2) = 1.
The undirected connectivity graph,Gconn, of a set of locations,
V ∈ P(P) (P denotes the power set function) is the graph
constructed from Gconn(V) = G(V, {(e1, e2)|isAdj (e1, e2)}).

In all models of the HMR described here, a configuration,
c, is a connected set of robotic subunit locations, c ⊂ P(P)
where ∀x, y ∈ c there exists a path inGconn(c). There are often
further constraints to the admissible set of configurations
depending on the HMR model.

A move, m, is an ordered pair of positions, m ∈ M =
P × P. A single-move plan, is an ordered sequence of moves.
Whether a move is admissible depends on the motion catalog,
which is different for different models of the HMR.

We specialize the general definition of a metamorphic
system by Ghrist et al.1, 6 for describing HMR motion
catalogs here. Ghrist et al. permitted an arbitrary alphabet
of symbols to label an arbitrary embedding space to describe
a specific state of the system. A “state” in Ghrist et al. is
a configuration of subunits for our purposes. Our alphabet
for labelling the hexagonal lattice, then, is simply A =
{OCCUPIED, EMPTY}. By the Ghrist et al. definition, a
local metamorphic system’s permissible state transitions are
completely described by a motion catalog, C, which is a
collection of generators. A generator describes which labels
may change (the trace) when a given context is present
(the support). Specifically, a generator, φ ∈ C consists of
a support, SUP(φ) ⊂ P(P), a trace, TR(φ) ⊂ SUP(φ) and an
unordered pair of labeled local states, Û0,1 : SUP(φ) �→ A

satisfying

Û0|SUP(φ)−TR(φ) = Û1|SUP(φ)−TR(φ).

In other words, the labeling of Û0 and Û1 are equal over
the support locations, but may differ in the trace. For the
HMR motion catalogs described here, the trace consists of
two adjacent locations, and the local states are labeled to
reflect that a single unit moves from an OCCUPIED location
to an EMPTY location.

Generators describe move classes, but an actual movement
is carried out at a specific location in the embedding space.
Ghrist et al. define an action of a generator φ ∈ C as
a rigid body translation, � : SUP(φ) �→ L, thus providing
information as to where the generator was applied and in what
direction. Given a state U : L �→ A, the action is admissible
if ∀x.Û0(x) = U (�(x)). The result of the action on the state
is

�[U] :=
{

U : onL − �(TR(φ))

Û1(�−1): on�(TR(φ)).

In all the specific catalogs used here, the trace consists
of two adjacent locations labeled EMPTY and OCCUPIED
in Û0 which are swapped for Û1, representing a subunit
moving to an adjacent location. So we can work out the
rigid transform � from m ∈ M. The Ghrist et al. notation is
very general, and in the algorithms presented in this paper,

Fig. 1. Previous motion catalogs modulo isomorphisms. Green
denotes the trace, where a subunit can move between. Blue and
white respectively denote where subunits must be/must not be in the
local context for the move to be admissible. (A) The original motion
catalog for the hexagonal metamorphic robot by Chirikjian.3 (B)
The motion catalog for the Claytronics prototype.9 (C) The three
generators comprising of Ghrist’s example motion catalog.1 (D)
A move permitted by the Claytronics model but not Ghrist’s as it
changes the gross topology of the aggregate.

we only need to know whether a move is admissible or not,
so for convenience we define the function matchC : M �→
boolean to return true if the move is admissible for the given
catalog, C.

3. Background
Chirikjian originally proposed the HMR.3 This robot was
one of the earliest proposed SRSs and remains a prototypical
example of a lattice-based SRS. The state of the SRS is
entirely specified by the locations of all subunits on the
lattice. This is in contrast to chain type SRSs and unit
compressible SRSs where subunits may have further internal
states, such as joint angles.

In the HMR model of motion, a subunit may move each
time iteration. In single-move planning, only one subunit is
permitted to change lattice location per time step, and in
multimove planning, several may change position per time
step. Whether a subunit can move or not is dependent on
its local context, as well as the global requirement that
all units remain connected. A number of different local
motion catalogs have been developed, giving rise to several
different versions of the HMR model. Chrikjian’s original
definition was the least restrictive, locally requiring only
that a robotic neighbor was present for the moving subunit
to pivot around (Fig. 1A). However, the additional global
requirement that the subunits of the configuration remain
connected requires explicit checking before any move can be
considered admissible. This global check requires O(n) time
to run.

Pamecha et al.16 were able to develop an algorithm capable
of solving Chirikjian reconfiguration tasks using a greedy
simulated annealing procedure. Since similar approaches fail
for other similar models,11 we conclude that their success was
perhaps due to the relatively unrestricted motion catalog.
In general, for simulated annealing (and other randomized
approaches) to be successful on a problem, the planning space
must not contain deep local minima or related constraints.13

A mechanical prototype of the HMR has been developed,
capable of moving according to the Chirikjian motion
catalog.15 This motion catalog implies that a moving
subunit could be potentially completely enveloped by robotic
neighbors, save for the empty space it is moving into. This
puts strong requirements on the geometry of the subunit. If we

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 75

denote the hexagonal space as six equilateral triangles with
sides of length r , then a stationary unit must span a distance
of 2r in order to physically connect to its six neighbors.
However, when the subunit moves, it must squeeze through
a space as little as r , or alternatively, its neighbors must
be compliant in some way. In order to meet these strict
requirements, the prototype was constructed from six rotary
actuators in a six-bar linkage mechanism. Thus, each subunit
was quite complex, making it a rather undesirable platform
for many practical applications.

A mechanically simpler physical realization of a hexagonal
metamorphic robot was developed by the Claytronics team.9

This motion catalog was more restrictive, requiring empty
space to be present opposite the subunit around which the
moving subunit was pivoting (Fig. 1B). The extra pivoting
space permitted the physical units to be circles and no
deformation of geometry was necessary in the physical
realization, making it desirable from the pragmatic viewpoint
of manufacture. Unfortunately, the requirement of extra
space in the motion catalog makes planning much harder. The
simulated annealing technique successfully used by Pamecha
et al. for the Chirikjian catalog requires exponential time
as the number of modules increases.11 As was the case
for the Chirikjian motion catalog, the Claytronics motion
catalog requires an explicit connectivity check to ensure the
aggregate remains connected during moves, at linear cost.

In an attempt to develop a cross-model theory of self-
reconfiguration, Ghrist et al. developed a general definition
of a local metamorphic system.1, 6 Ghrist required, for
all local metamorphic systems, that the motion catalog
should completely describe the local and global motion
constraints. Neither of the above-mentioned catalogs satisfy
this definition, as the requirement that the configurations do
not become disconnected must be enforced explicitly, and
separately, from the local motion catalog. Ghrist suggested a
new motion catalog for the HMR (Fig. 1) as an example of a
local version of a similar metamorphic system. Ghrist’s new
HMR motion catalog prevents gross topological changes to
occur during motion, such as introduction of enclosed space
into the configuration, or disconnection between subgroups
of subunits.

The theoretical analysis by Ghrist et al. yields useful
implications for all HMR reconfiguration state spaces. Ghrist
represented the reconfiguration state space as a cubical
complex. Each cube grouped moves that were commutative.
That is, a sequence of moves drawn from a cube could be
admissibly applied in any temporal permutation, i.e., the local
contexts defining the applicability of the moves were not
overlapping. Further, this state complex was of non-positive
curvature, with the immediate result that any multimove plan
(including single-move plans) could be deformed locally into
an optimal version of the same homotopy class in O(n2)∗.

The state description of a configuration for a HMR is
the same for all models discussed. It is only the admissible
motions that are different. One can see immediately from the

∗ Non-positive curvature in simple terms means that there are
“no fat triangles” in the space. So, the optimal shortest path can be
found with a series of local improvements from any starting path
within the same homotopy class.

motion catalogs (Fig. 1), that Ghrist’s motion constraints are
more restrictive than the Claytronics motion catalog which is
more restrictive than the Chirikjian motion catalog. Clearly,
all less constrained models can execute plans applicable for
more constrained models.

Determining admissibility of moves in Ghrist’s HMR
model can be done in O(1), or in O(log(n)) persistently.11

In general, local metamorphic systems are computationally
attractive because only local contexts need to be considered.
However, in practice, even with the additional cost of a
linear cost connectivity check, the Claytronics model is
quicker to plan for than Ghrist’s HMR motion constraints.
This has been found to be true on a broad range of
general planning strategies:11 simulated annealing,10 greedy
search,20 rapidly-exploring random trees13 and probabilistic
roadmap planning.8

A different form of HMR is presented in ref. [18] with
O(

√
n) movement time performance. We consider this to

be different from the other HMRs discussed so far in two
respects. First, it uses an additional empty third dimension for
units to move into during planning, which simplifies planning
considerably by providing a large empty space for units to
utilize. Secondly, each unit is given a momentum, which
allows a single unit to move faster than one lattice location
per time unit. The computation effort required to form plans
is still O(n), but for a less constrained model than the original
Chirikjian HMR.

In this paper, we present another subspace, called the
Surface space, that can be viewed as a further constrained
version of Ghrist’s HMR motion catalog. It inherits Ghrist’s
locality and admits a simple planning algorithm to solve
Surface-to-Surface reconfiguration tasks efficiently. This
Surface state space has been used in other related work
to form long distance plans within the Claytronics HMR
reconfiguration state space, which allowed Claytronics-to-
Claytronics reconfiguration tasks to be solved, empirically,
on average, in linear time12 for 97% of the state space.
An arbitrary Claytronics HMR configuration, on average,
is only a few moves away from a nearby Surface adhering
configuration using the Claytronics motion catalog. It is thus
tractable to compute a motion trajectory in the more general,
and computationally less efficient, Claytronics space only
a small distance to find a nearby Surface configuration.
The previous work12 found a pair of nearby Surface
configurations corresponding to the Claytronics start and
end configurations in the reconfiguration task, and found
a trajectory between them using a more efficient version
of the Surface-to-Surface planner presented here. While
the algorithm was highly efficient and operated on a large
fraction of the Claytronics state space, the Claytronics-to-
Surface planning step was essentially a heuristic method that
had a failure rate proportional to problem complexity. In the
interest of clarity, all the analysis in the following sections
is restricted to the properties of the Surface state space, for
which a well-behaved motion planner is presented.

So it is the nature of the reconfiguration state space of the
Surface HMR motion model we wish to understand further. It
is worth noting that the motivation for the Surface state space
definition is removal of the planning difficulties associated
with the Claytronics motion catalog requiring empty space

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

76 A characterization of the reconfiguration space of self-reconfiguring robotic systems

Fig. 2. (A) A potential metamodularization of the HMR that permits
mobility of the subunits found in the center of each hexagon edge
using the Claytronics motion catalog, in particular, providing empty
space opposite the pivot locations. (B) A configuration built out of
12 such metamodules, and an example of how local metamodule
motion primitives can be daisy-chained together to the effect of
moving one metamodule to an empty location adjacent to the
perimeter. (C) Expressing the local support required for a subunit
to enter or leave a location.

opposite the pivot location. Previous attempts at abstracting
away troublesome constraints in other SRS models have
centered around metamodularization of the state space.19

In metamodularization, the atomic planning unit is actually
a collection of SRS subunits (Fig. 2A) with predefined
sequences of moves that permit the metamodules to move
with fewer motion constraints than the underlying subunits
(Fig. 2B). The planning task is thus simplified, but at the
cost of coarsening the embedding lattice significantly. The
drawback of the methodology becomes apparent when one
considers the proportion of configurations in the underlying
SRS state space that have a representation in the metamodule
state-space. Metamodule conforming configurations occupy
an almost negligible proportion of the overall general state
space. Metamodularization, then, does not lend itself well to
being used as an intermediate path through a more general
configuration space (for example, there are no metamodule
configurations for 13 subunits for the example in Fig. 2). Both
a metamodularization subspace and the Surface subspace
achieve similar qualitative behavior, simplifying planning,
by adding additional motion constraints to an underlying
motion model. The Surface space achieves a similar result to
metamodularization, but by sacrificing fewer configurations.

So the motivation for this work is to shed light on
the question: why is it that adding extra constraints can
sometimes make planning harder, as in adding constraints
to the Chirikjian catalog to create the Claytronics catalog,
and yet sometimes easier, as in adding constraints to
the Ghrist catalog to create the Surface catalog, or by
applying a metamodularization strategy? By identifying
general principles that describe when and how adding
constraints can simplify planning, we expect advances in
reconfiguration algorithms for much harder models of SRS
whose motion state space is difficult to mentally visualize,
e.g., M-TRAN.14 Furthermore, adding artificial constraints
to a model reduces the number of states the augmented
system can express, so our work will aid in constructing
constrained motion catalogs that sacrifice the minimum state
space volume for a gain in planning efficiency.

Fig. 3. Wrapping a tour around a configuration. This configuration is
not a valid Surface configuration because it contains a kink violation
(K) and a dual path violation (Dp).

Fig. 4. Examples of a valid Ghrist configuration and a valid Surface
configuration. Ghrist configurations may contain narrow intrusions
of space, which prevent subunits on the perimeter from crossing.
Surface configurations, by construction, do not.

4. A Surface-to-Surface Planner
A Surface adhering configuration, c ∈ S, is defined as
a configuration that permits a Hamiltonian path to be
wrapped around the adjacent external locations (adj (c)).
This requirement is compromised by two classes of violation.
A kink violation is present when the peripheral tour leaves
through the same edge it enters from (Fig. 3), and a dual
path violation is where the tour traverses through the same
location more than once (Fig. 3).

A valid Hamiltonian path implies several properties
relevant to motion under the Claytronics and Ghrist motion
catalogs. If an extra subunit is added, the subunit can
move in a complete loop around the entire perimeter of the
configuration. The lack of dual path violations implies there
is always open space above the additional subunit for pivotal
space. Absence of kink violations implies there cannot be
a change of gross topology, specifically an introduction of
enclosed space, caused by a subunit bridging the empty space
adjacent to the kink (Fig. 1D).

Note however that while the added subunit is able to
move around the configuration freely using Ghrist’s motion
catalog, it may not be able to stop anywhere on this path
and still result in a valid Surface configuration. The moving
subunit may itself cause kink or dual path violations. The
Surface model’s constraints merely imply that if a unit can
be removed from one perimeter location and placed at another
valid location, then a sequence of Ghrist motion moves will
exist to link them (although violations may transiently be
generated when executing the underlying Ghrist sequence).

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 77

6,6

E.1 E.2

E.3 E.4

Fig. 5. There are four different generators for adding/removing a
subunit from a Surface configuration.

Whilst the Hamiltonian path constraint is a useful
description of the Surface model’s restrictions, both for
implementation and visualization of the path around the
configuration subunits take, we can rewrite this functionality
in terms of a new set of local contexts for the motion
catalog. This proves that the Surface HMR model is also
a local metamorphic system by Ghrist’s definition. A major
difference with the motion catalog for the Surface model
compared to the other HMR models is that the start and end
locations for a move may not be adjacent. So a Surface plan
is a set of moves that relocate individual subunits from one
location on the perimeter to another, with the guarantee that
a detailed sequence of consecutive Ghrist moves will exist
that pass through the Surface plan way-points.

Figure 5 shows the generators where a unit can be added
or removed from a Surface configuration to generate another
valid Surface configuration. If local states at the single
trace location, tr , satisfy Û0(tr) = EMPTY and Û1(tr) =
OCCUPIED then we say the generator is an ADD, otherwise
it is a REMOVE. A move for the Surface model is a
REMOVE followed by an ADD elsewhere. Technically, in
Ghrist parlance, the catalog for the Surface model is the
(infinite) union of all possible relative arrangements of a
REMOVE and an ADD whose labeled local states agree.

Figure 5 was not generated by hand. All valid Surface
configurations containing eight subunits were enumerated
using the Hamiltonian path constraint description above.
The relative local contexts of adjacent empty space was
stored and annotated with a label describing whether a
subunit could be added or not. This set of annotated local
contexts was processed by the C4.5 algorithm17 found in the
Weka7 data mining library to produce a shallow decision tree.
The decision tree had 100% accuracy at determining what
necessary local context was present to add a subunit, and was
optimized upon valid configurations only. As a side effect,
the data mining tool identified that a subunit could not be
added if it created the patterns shown in Fig. 6.

Lemma 1. For any given Surface adhering configuration,
an additional module can move around the perimeter in a
complete loop using the Ghrist motion catalog.

Fig. 6. A Surface configuration never contains the above patterns
of empty space (white) and robotic subunits (red).

Proof. By construction, discussed above. �

The Surface-to-Surface planning algorithm finds an
admissible sequence of Surface moves in order to change one
Surface adhering configuration into another. From Lemma 1
the resulting plan can be executed by a HMR constrained
by the Ghrist, Claytronics or Chirikjian motion constraints.
Each single move in the Surface HMR, however, is a
concatenation of several single moves by the other catalogs
(a so-called, long-move) on account of the start and end
location decoupling. The high level Algorithm is outlined
in algorithm 1. For clarity, the version presented here does
not include a number of additional optimizations (see ref.
[12]). So this specific algorithm does not really run in linear
time. However, the salient features relevant for the present
discussion have been preserved.

The algorithm’s main loop incrementally changes
the current configuration (which is initially the start
configuration) toward the goal configuration by applying
valid Surface moves determined by improve. The algorithm
tracks a set P which represents placed subunits. Once a
unit is placed, it is no longer considered by the improve
subroutine to be a possible subunit that can be moved. P is
updated incrementally by updateP (Algorithm 2); a subunit
is considered placed if it is adjacent to an already placed unit,
and the goal contains a unit at the same location. It has been
empirically determined that, on average, only O(

√
n) long-

moves are required to transform a start configuration into the
goal configuration.12

The subroutine improve finds a valid Surface move that
moves a subunit not in P to a location that would lead
to an addition to P . The improve subroutine is highly
optimized elsewhere to maximize the chances that only a
few moves need be considered,12 but these optimizations are
not included here. There is a small chance that no move will
improve P in which case the planner fails to find a solution for
the reconfiguration task at hand. Empirically, this seems to
happen rarely. In fact, the probability of failure tends toward
zero as n tends to infinity (Table I).

The result of the Surface-to-Surface planner is a sequence
of long-moves, representing location-to-location traversals

Table I. Probability of StoS failing to find an
improvement in random tasks decreases as the number

of units in the random configurations increase.

Units, n fails trials 95% C.I. of P (fail)

250 264 10,000 0.0233 0.0297
500 7 10,000 0.0003 0.0014

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

78 A characterization of the reconfiguration space of self-reconfiguring robotic systems

Algorithm 1 The Surface-to-Surface finds a set of admissible
moves to change a configuration c into a configuration cgoal.
A set of placed subunits, P , is incrementally grown by calls to
improve. improve searches for admissible moves to improve
P .
improve : S × S × P(P) �→ M

improve(c, cgoal, P) �=
for(∀s.s /∈ P ∧ s ∈ c,∀e.e /∈ P ∧ e ∈ cgoal)
if (match(c, s, REMOV E)))
if (match(c − {s}, e, ADD))

return (s, e)
throw error
StoS: S × S �→ Mk

StoS(c, cgoal) �=Mk

P ← updateP (∅, ORIGIN, c, cgoal)
while(|P | < |c|)
m ← improve(c, P, cgoal)
c ← c ∪ {m2} − {m1}
P ← updateP (P, m2, c, cgoal)
append(m, M)

Algorithm 2 The set of placed units, P, is updated recursively.
If a location, x, is in the current and goal configuration but not
in P it is placed in P and updateP is called on its neighbors.
updateP : P(P) × P × S × S �→ P(P)
updateP (Pprev, x, c, cgoal) �=P

P ← Pprev

if(x ∈ c ∧ x ∈ cgoal ∧ x /∈ P)
P ← P ∪ {x}
for(∀q.isAdj (q, x))
P ← updateP (P, q, c, cgoal)

round the perimeter of the intermediate configurations.
Unwrapping the long-moves into a sequence of short-moves,
compatible with other HMR models, can be done in near
linear time.12 This is possible because, on average, the
perimeter distance for each long-move scales as O(

√
n), and

the number of long-moves required to reconfigure also scales
as O(

√
n). Thus, it appears empirically justified that the

average asymptotic performance of the Surface-to-Surface
planner is nearly linear (subject to how close to constant time
improve can be implemented) with an insignificant failure
rate for large n.

We wish to understand several things about this algorithm.
Why does the algorithm asymptotically fail less as n → ∞,
even though it is essentially a local heuristic? Why can the
task be solved incrementally by growing a placed set, P ?
Also, why cannot the Ghrist HMR reconfiguration tasks be
solved in a similar fashion, i.e., what makes this particular
HMR motion catalog special?

5. The Surface Space is Highly Connected
In general terms, a planning algorithm’s task is to find
paths through some space, Cfree, for multiple start and end
points. The difficulty of the task, and therefore the minimal
complexity of a planning algorithm, is inherently coupled
to the properties of the configuration space. Typically, for
computational reasons, one approximates a continuous or

Fig. 7. Left: a simple example of a planning space. The obstacle in
the center causes bottlenecks in Cfree (shown in red). Right: a graph
approximation of the same space.

otherwise complex, Cfree, by discretization or sampling-
based methods to yield a graph whose vertices are states in
Cfree. For HMR planning, Cfree is naturally discrete; vertices
of the space represent configurations, and edges represent
admissible moves (or sets of moves in multimove planning,
but not considered here).

Bottlenecks in Cfree are well known complications for
planners.13 A bottleneck is a suitably narrow subset within
Cfree that constrains different possible solution paths to go
through it in order to traverse between much larger subsets
of the space (Fig. 7, in red). Iterative or sampling-based
planning algorithms that must ‘discover’ such bottlenecks
computationally can face serious challenges as they may be
naively expending precious computational time exploring
irrelevant areas of Cfree (Fig. 7, in gray).

Well-founded graph-theoretic measures can concisely
express what we mean by a bottleneck. Let G = (V, E) be a
simple unweighted graph. A cut, W ⊂ V , separates the graph
into two sets of vertices, W and V − W . Let deg(x ∈ V) be
the degree of a vertex. Then the volume of a set of vertices
W ⊂ V is defined as vol(W) �=

∑
i∈W deg(i). The cost of

a cut on the graph is cut(W) = |{x = (u, v)|x ∈ E ∧ u ∈
W ∧ v /∈ W }|, in other words, the number of edges crossing
the cut.

The Cheeger constant of a graph, hG, is a measure of
“bottleneckedness” which finds a small cut that separates the
graph into two large volumes.4 It is defined as

hG = min
S

cut(S)

min{vol(S), vol(V − S)} .

Directly measuring the Cheeger constant for a graph is
computationally intractable. It is, however, bounded by the
second smallest eigenvalue of the Laplacian matrix (which
is also known as the algebraic connectivity of the graph4).

The Laplacian L matrix of a graph is

li,j :=

⎧⎪⎨
⎪⎩

1 if i = j and deg(vi) �= 0

− 1√
deg(vi)deg(vj)

if i �= j and vi is adjacent to vj

0 otherwise.

If L has the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn then the
Cheeger constant hG is bounded by

√
2λ2 > hG ≥ λ2

2
,

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 79

Table II. The number of vertices, edges and measure of
algebraic connectivity (λ2) for the Ghrist and Surface model
reconfiguration graphs generated by different numbers of
subunits (n). The states spaces are identical up to n = 4, and

only differ marginally at n = 7.

Ghrist Surface

n |V | |E| λ2 |V | |E| λ2

2 6 15 1.2000 6 15 1.2000
3 33 168 1.1429 33 168 1.1429
4 176 1431 1.1186 176 1431 1.1186
5 930 10836 1.1033 900 10332 1.1111
6 4878 75945 1.1 4482 67725 1.0978
7 25,480 506,394 1.0872 21,910 417,042 1.0909

λ1 is 0 for all Laplacians.4 λ2 is known as the algebraic
connectivity of the graph. If a graph has a low Cheeger
constant, this implies there are small cuts that can separate
large volumes of the graph. This captures the essence of
bottlenecks; paths between the two volumes must be routed
through a small corridor.

Our hypothesis is that the configuration space of the
Surface model has fewer bottlenecks compared to the Ghrist
model of the HMR. We will use algebraic connectivity and
its relation to the Cheeger constant to measure the severity
of bottlenecks in Cfree for the Ghrist model and the Surface
model. However, first note that the atomic moves in the Ghrist
motion model represent a single subunit moving an adjacent
location, whereas Surface moves represent a single subunit
moving a number of lattice locations. To compare the models
fairly, we created an analogous definition of a long-move for
the Ghrist model to be a sequence of consecutive admissible
moves applied to a single subunit, i.e., all the locations that
a single subunit can reach while the other subunits remain
fixed. In addition, because both model catalogs do not permit
gross topological changes in the morphology, we only study
configurations that do not contain enclosed space.

For the configuration graphs containing up to seven
subunits, it is possible to construct the Laplacian and
calculate the algebraic connectivity directly. The results are
shown in Table II. However, the reconfiguration graphs differ
very little at such low numbers of subunits for the two models.
With few subunits, there are not enough permutations of
possible local contexts to differentiate the models. The
difference between models only becomes apparent at higher
complexity levels.

Unfortunately, expanding the configuration graphs
containing larger number of subunits quickly becomes
intractable. So in order to estimate the properties of
the Cheeger constant at higher complexity levels, i.e.,
subunit numbers, we use a sampling methodology. First,
we generated a random Surface adhering configuration
containing n units by iteratively uniformly selecting an
ADD action to a growing configuration (starting from the
ORIGIN). Second, we applied 1000 random moves from the
respective motion catalog (long-moves for the Ghrist model),
so that the initial Surface configuration diffuses into a model-
specific area of the configuration space. Finally, the model-
specific configuration reached is used as a starting location

0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

P
(

λ 2=
x)

Estimated distribution of λ
2
 for Ghrist Model

0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

P
(

λ 2=
x)

Estimated distribution of λ
2
 for Surface Model

x

12
14
16
18
20
22
24
26
28

12
14
16
18
20
22
24
26
28

Fig. 8. The estimated densities of λ2 of the Laplacian after sampling
100 subgraphs from the reconfiguration spaces of the Ghrist model
and the Surface model.

for taking a sample. Examples of configurations generated
by this procedure are shown in Fig. 4.

A sample subgraph is generated by performing a breadth
first search to a depth of two from the sample location
(the sample location, its neighbors, and its neighbor’s
neighbors). The algebraic connectivity may be computed for
this subgraph, and should correlate to the global algebraic
connectivity. This procedure was applied to 100 samples for
each complexity level under study. The smoothed results are
shown in Fig. 8.

For the Ghrist model, Fig. 8 shows that as the number
of units in the configuration increases, so the spread of
λ2 increases, and the mean diminishes. This suggests that
our sampled subgraphs are increasingly likely to contain
bottlenecks. For higher numbers of subunits this suggests
that the Cheeger constant is tending toward 0. For the Surface
model the reverse seems to be true. The spread of λ2 is
decreasing, and the mean increasing. Bottlenecks seem to be
sparser as we add more units to the Surface configurations.

Our interpretation for the Surface model is that when
there are very large numbers of subunits, the movement
of a particular subunit is relatively unrestricted; it is able
to move anywhere on the surface. Interaction between
subunits mainly occurs at the local level, whose importance
diminishes as the number of units grows. Thus, local
interactions that cause bottlenecks become less likely, and
the mobility of subunits on the perimeter increases. For the
Ghrist model, it only takes two kinks on the surface to divide
the perimeter into two classes that units cannot move between
(see the H configuration in Fig. 17 in next section). As the
number of units grow, so the probability of two or more
kinks being found somewhere on the perimeter tends toward
certainty.

The implication of Fig. 8 is that the Surface model has
fewer bottlenecks compared to the Ghrist model. The sparsity
of bottlenecks in the Surface model explains why a greedy
planning procedure, such as the one employed in the S-to-S

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

80 A characterization of the reconfiguration space of self-reconfiguring robotic systems

Fig. 9. Graph minor operations, graphs to the right are minors of
those to the left. Red denotes an edge contraction operation, and
green an edge deletion.

planner, suffices in an increasing proportion of cases as n

grows.

6. Graph Minor Substructure
The previous section uses Spectral Graph Theory in order
to explain when greedy planning methods suffice in a
reconfiguration state space. Within this next section we
introduce the use of the Graph Minor Theory to the analysis
of SRS state spaces, first as a compact, precise notation for
representing that one state space is a constrained version
of another, and as a tool that reveals startling differences
between the easy and hard planning spaces as subunits are
added. This last point in particular partially explains why
efficient planning methods may only exist for some planning
state spaces.

Definition 2. A graph, H , is said to be a minor of a
graph, G, denoted H ≤ G if there exists a sequence of edge
deletions, contractions and vertex deletions to change G into
H.5

Figure 9 illustrates the basic graph minor modification
operations. The graph minor relation is a compact notation
for describing when one state space can be executed upon
another model; for describing when one SRS motion model
is a constrained version of another. Consider the similar
subgraph relation.

Definition 3. A graph, H , is said to be a subgraph of a
graph, G, if there exists a sequence of edge deletions and
vertex deletions to change G into H.5

The subgraph relation lacks edge contractions. Now
consider the metamodule reconfiguration state space graph
containing k metamodules, Mk , and the Claytronics state
space which contains 12 subunits for every metamodule, C12k

(Fig. 10). Metamodule movements are built from sequences
of underlying motion primitives, so although each Mk vertex
is present in the C12k graph, each edge of the Mk graph
represents a sequence of underlying C12k edges. Thus Mk is
not a subgraph of C12k , yet it is a graph minor, i.e., Mk ≤
C12k . Similarly, we can summarize all the discussed HMR
state spaces using graph minor nomenclature as Jk ≥ Ck ≥
Gk ≥ Sk , where Jk , Ck , Gk , and Sk stand for the Chirikjian,
Claytronics, Ghrist, and Surface model reconfiguration state
spaces containing k subunits, respectively.

The minor relation is a compact, precise notation for
expressing what we mean by one state space is a constrained
version of another. Butler et al.2 present an argument
that their cubic SRS model is generic because it can be

A B

...

Fig. 10. A. A metamodule can tunnel through another, represented
by a single edge in the planning state space. This single move in the
metamodule state space is implemented using a sequence of moves
from the underlying state space. The transient moves used in the
Claytronics state space have used the edge contraction operation to
form atomic moves in the metamodule state space (B, red). The edge
contractions, plus pruning of non-conforming metamodule states
and moves (green) show that metamodularization corresponds to a
graph minor of the Claytronics state space.

instantiated by various existing SRS motion catalogs. If we
denote their cubic SRS reconfiguration state space containing
k subunits as Bk , the metamodularized M-Tran state space
as Tk , we can rewrite one of the instantiations described in
the work as Bk ≤ T4k , as four M-Tran units were required
to cooperate in order to achieve the minimum motion
requirements of their model.

While the graph minor relation is a useful notation
for describing relationships between different SRS motion
catalogs, we now look at the family of state space graphs of
an individual SRS catalog generated by different numbers of
subunits, e.g., Sn, for n > 1; to understand how the planning
problem changes as more subunits are added. Intuitively, one
might presume that the state space graph for a HMR model
containing i subunits will share similarities with the state
space containing i + 1 subunits. We address this question
formally and find a significant difference between the state
spaces generated by models that are hard to plan for, e.g.,
the Ghrist catalog, and models that have efficient solutions
in existence, e.g., the Surface catalog or a metamodularized
state space.

For the Surface model, the i reconfiguration graph is
a graph minor of the i + 1 reconfiguration graph, S1 ≤
S2≤ This does not appear to be true of the configuration
graphs generated by the Ghrist motion catalog. In fact, the
counter-examples for the Ghrist case are caused by the very
cases where bottlenecks are found. Similar to the S case,
the HMR metamodularization example is also well ordered
by the minor relation, M1 ≤ M2 ≤ As will be discussed
further later, graph minor ordering in the reconfiguration state
spaces has significant implications for the motion planning
problem, and is likely to be the mechanism for explaining
why one motion model admits efficient planning and others
do not.

To show that a reconfiguration state space, Xi is a
minor of Xi+1, we utilize the fact that each vertex of the
reconfiguration graphs is labeled by the arrangement of
subunits on a common embedding lattice. This labeling
scheme permits a vertex, vi of the Xi graph to be associated

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 81

Fig. 11. To globally show Xi ≤ Xi+1 we can define a local
relationship between the graphs, and show that this relationship
locally adheres to the minor relationship. Red denotes edge
contractions, and green, edge and vertex deletions. The global minor
can be proved by stitching together the local minors.

with a group of vertices, v̄i+1, in the Xi+1 graph that
corresponds to possible locations a subunit can be added to
the vi configuration to generate a configuration within Xi+1.
This observation implies that a local area of the Xi graph has
a corresponding local area in the Xi+1 graph.

To show globally that the Xi graph is a minor of the Xi+1

graph, it is sufficient to prove that: for every vertex, vi , in
the Xi , that vi’s local graph neighborhood is a minor of
v̄i+1 graph neighborhood, and that these local neighborhoods
are connected in the same topology. This is summarized
diagrammatically in Fig. 11.

The sketch of the proof to show that Si ≤ Si+1 is as
follows. Any configuration adhering to the Surface model
implies that if a module can move at all, then it is free to
move in a complete loop around the exterior. The Si+1 space
contains one extra subunit. We show that the subunit can
always move out of the way, in order to let any move that
existed in the Si graph take place. Prevention of a move in
the Si state space for the Si+1 state space can only occur
if the extra subunit in the Si+1 state space interferes with
the local support that determined the move’s admissibility.
We argue geometrically that for large configurations, there
always exists a potential location for the added subunit that
lies outside of the local support locations of the Si move. The
finite size of the motion catalog’s local supports, plus the total
mobility of the additional subunit, implies that “get out of the
way” moves always exist in the Si+1 state space. The “get
out of the way” move edges can be contracted to generate
the Si graph, thus showing that Si ≤ Si+1. This argument
does not follow for the Ghrist model because, in general, the
extra subunit does not always have enough freedom to “get
out of the way” of the local supports that determined the
admissibility of a move.

Concretely, we introduce the notions of local structure in a
reconfiguration graph around some vertex, and an inherited
local structure which represents the analogous locale in a
reconfiguration graph generated by adding a unit.

Definition 4. The local structure for a configuration, v,
is all configurations reachable by a single Surface move
(remember a move is a REMOVE followed by an ADD from
the Surface catalog, Fig. 5).

A

B

C

Sup(A)

Sup(B)

Fig. 12. Whether or not a subunit exists at location C does not affect
a move between A and B because its support does not intersect A or
B’s. Rather than showing this in 2-dim, we project the support areas
onto a line parallel to the widest diameter of the shape. Showing
the supports do not intersect is simplified to showing the projected
support intervals do not overlap.

Definition 5. The inherited local structure for a
configuration, v, is all possible configurations generated by
applying an ADD from the Surface catalog to v. (Fig. 5)

Lemma 6. Any two configurations belonging to a vertex’s
inherited structure have a valid move between them.

Proof. This follows from Lemma 1. Thus the inherited
local structure forms a clique of configurations connected by
moves.

To show that the inherited local structure preserves
analogous moves that existed in the local structure, we
first show that an extra subunit can always be added at
a location that is far enough away from the start and
end of the move so that it does not affect the local
support that determined the moves admissibility (sketched
in Fig. 12). If a move is between position A to position
B, we need to show that ∀A∀B∃C.(sup(A) ∩ sub(C)) ∪
(sup(B) ∩ sub(C)) = ∅. There are a variety of ways to show
this, for simplicity, in the following proof we project the
support areas onto a line parallel to the widest diameter of the
configuration. �

Lemma 7. All generators of the Surface catalog have a
width of less than 5.

Proof. See Fig. 5. �

Lemma 8. A connected configuration containing 631 or
more subunits has a large diameter of at least 29.

Proof. The configuration with the smallest large diameter
occurs when subunits are arranged into a perfect hexagon.
631∗∗ subunits can be arranged into a large hexagon of
diameter 29. Moving any subunit, or adding more subunits,
will only increase the large diameter. �

∗∗A Hexagonal Number

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

82 A characterization of the reconfiguration space of self-reconfiguring robotic systems

7

Fig. 13. Lemma 9 is shown by sliding the shape shown in green
(of width 7) toward the configuration until it overlaps one or more
subunits on its lower edge.

Lemma 9. For a Surface configuration, within an
columnar interval of width 7, a valid ADD location and
its complete support is contained.

Proof. First, a shape of width 7 is slid over empty space
toward the configuration (Fig. 13) until intersecting a subunit.
The lower row of hexagons comprising of the shape will then
contain between one and seven subunits and the remainder
shall be empty (by construction). We will now consider
different cases of how the bottom row can be occupied in
order to show that regardless of how, there is always a location
where an extra subunit can be added.

A and B of Fig. 14 reflect the cases of when the bottom
row contains only one subunit. In each case a subunit can be
added using Surface ADD E.1 (Fig. 5). When two subunits
are present and adjacent, Fig. 14C and its generalizations
demonstrate Surface ADD E.2 can be used to add a subunit.
When the two subunits are a distance of one from each
other, case D is relevant. Case D can only occur if additional
subunits are found adjacent to the empty location (light blue),
because otherwise the configuration would be invalid (Fig. 6).
With the implied extra subunits included, Surface ADD E.4
(Fig. 5) is applicable. Another possibility when a pair of
lower row subunits are at a distance of one is case E, this
however, is an impossible Surface configuration (Fig. 6), but
regardless, an applicable ADD location exists. When two
subunits are at a distance greater than two, such as in the
case F, it is clear one subunit no longer becomes relevant
to determining an ADD applicability. For cases with more
subunits, the above arguments are trivial to extend (Surface
ADD E.3 is used when case B is extended to three subunits).
Therefore, within an interval of 7, a valid ADD location can
always be found, regardless of the specifics of the Surface
configuration. �

Lemma 10. On a line of length 29 or greater, if two
intervals of width 5 are present, then an interval of width
7 can be found which intersects neither.

Proof. The worst placement of the intervals of width five
are shown in Fig. 15 for a line of width 28. Clearly extending

A B

C D

E F

Fig. 14. The major cases for consideration of how the shape in
Fig. 13 can be occupied with subunits. The area marked with a
green perimeter labels the location of an applicable support for
some Surface ADD generator. The location of where the subunit
can be added is shown in green.

6 5 6 5 6

Fig. 15. On a line of length 28, two intervals of width 5 can be
placed such that an addition interval of 7 cannot be placed without
intersecting one of them.

the length of line by one will permit space for an interval of
width 7 to be inserted without overlap. �

Lemma 11. For any move between location A to location
B on a Surface configuration containing 631 subunits or
greater, there exists a location C where a subunit can be
added, whereby the support of A and B do not intersect the
support of C, i.e., ∀A∀B∃C.(sup(C) ∩ sup(A)) ∪ (sup(C) ∩
sup(B)) = ∅.

Proof. Projecting the supports of A and B onto a line
parallel to the line defining the large diameter of the 631
subunit sized configuration yields two intervals of size 5 (by
Lemma 7) on a line of length 29 (Lemma 8). An interval of
width 7 shall exist on this line that does not intersect either
of the intervals of size 5 (Lemma 10). Somewhere within the
area of the configuration that would project to the interval of
size 7 exists and ADD location C (Lemma 9) which cannot
intersect the supports of A or B. �

Remark. This also holds for configurations of any size,
but the only proof we are aware of involves cumbersome
enumeration of cases.

Lemma 12. For every move A → B in a local structure
between configurations v and u, there exists at least one pair
of configurations v′ and u′ in the inherited structure between
the same locations.

Proof. A configuration can be represented as a set of
subunit locations. Let v = X ∪ {A} and u = X ∪ {B}. We

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 83

Fig. 16. A local structure (left) is a minor of the inherited local
structure (right). The left central vertex is surrounded by all
configurations reachable by a move (its local structure). The right
central vertex contains the inherited structure for that vertex (a
clique), yellow denoting where an additional subunit has been
added. For every move in the local structure (white to purple),
a comparable move can be found in the inherited structure with an
addition subunit added, denoted by the verteces joining the central
vertex. The red lines within the inherited structure shows which
moves are required to move the additional subunit around to “get
out of the way” so that all analogous moves can execute. Deleting
all black edges in the inherited clique followed by contracting the
red edges reproduces the local structure.

simply need to find an ADD location C that can be added
to v and u such that it does not interfere with the support
of A and B that enabled the move A → B to take place.
Lemma 11 shows such a C exists when there are more than
631 subunits in the configuration. Thus a C always exists
such that v′ = X ∪ {A, C}, u′ = X ∪ {B, C} and the move
A → B is still valid. �

Lemma 13. The local structure of a vertex, v, is a graph
minor of its inherited local structure v′.

Proof. Each neighbor, ui , in the local structure of v,
represents a valid move between the configurations v and
ui . By Lemma 12 ∀ui , there exists a location zi that permits
a move between v ∪ {zi} and ui ∪ {zi}. By definition, the
configuration v ∪ {zi} is in the inherited structure. By Lemma
6 there exists a move between all v ∪ {zx} configurations.
If all moves between v ∪ {zx} are contracted and all
edges not v ∪ {zi} → ui ∪ {zi} in the inherited structure are
deleted, the remaining edges are the local structure (see
Fig. 16) �

Theorem 14. The state space of the Surface model
containing i subunits is a graph minor of the reconfiguration
space containing i + 1 units, Si ≤ Si+1 for i ≥ 631.

Proof. By Lemma 13 every vertex in the i graph is a
minor of the inherited graph. For a pair of configurations in
the i graph, u = X ∪ {x}, v = X ∪ {y} with a move between
them, x → y, Lemma 13 states an ADD location on each,
zuand zv exists such that the same move can take place
in the inherited structure, X ∪ {x, zu} → X ∪ {y, zu} and
X ∪ {y, zv} → X ∪ {x, zv}. By Lemma 6, a connecting move
between the local minors exists between X ∪ {x, zv} and
X ∪ {x, zu} and thus we can compose all the local minors of
Lemma 13 into a graph and edge contracting the connecting
moves to produce the reconfiguration graph containing i

subunits. �

Fig. 17. A counterexample case for the Ghrist model. Two neighbors
in the local structure of the central H configuration are shown
(top). The induced local structure of the H configuration is divided
into four connected components, two cliques and two unconnected
vertices. The local structure cannot be reconstructed from edge
deletions and contractions of the inherited structure, and thus is not
a graph minor.

Remark 15. For an alternate viewpoint on the same result,
we could entirely skip the composition of local graphs. An
extra subunit can be added, and moved out of the way in order
to realize all sequences of realizable moves (Lemma 12).
However, this loses sight that there is a notion of locality
relating the local structure to the inherited local structure
through the embedding space. This becomes important when
we consider the counter example for the Ghrist model.

Conjecture 16. The Ghrist reconfiguration graph
containing i units is not a graph minor of i + 1 when i

is greater than some constant.

Our above construction of graph minor for the Surface
model does not hold for the Ghrist configuration graph
because an additional subunit in the inherited local structures
does not, in general, form a clique structure. Thus, while
a location may exist for every local move that permits
the move to take place in the inherited structure, there
may not be connections between these locations. Figure 17
shows a counterexample where the inherited structure is
disconnected. In these cases, the local structures are not
minors of the inherited structures, and so a global minor
cannot be constructed from a composition of local minors.

Interestingly, if the H configuration counterexample in
Fig. 17 is used as a starting point for a subgraph sample
for the procedure in Section 5, then the resulting subgraph
yields an λ2 of just 0.03. This classifies the configuration as
the most bottlenecked configuration encountered. It appears
that the areas of the reconfiguration space where the graph
minor relation breaks down is also where bottlenecks appear.

Theorem 17. For the metamodule state space, M1 ≤
M2≤

Proof. Omitted for brevity, but the proof largely follows
the logic for the Surface model. �

Decoupling the start and end positions of moves is
the primary reason why minor ordering is found in the
reconfiguration graphs of the easy planning spaces studied
here. It must be noted though, that the minor ordering is a
global structural property of the reconfiguration graphs, and
not a consequence of the representation used to describe the
motion catalogs.

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

84 A characterization of the reconfiguration space of self-reconfiguring robotic systems

Fig. 18. Each Surface state space can be nested within the next.
While a Surface state space is always found within a Ghrist state
space, each Ghrist state space contains an area that is not contained
with its child. It is for this reason that Ghrist problems cannot be
solved efficiently over the entirety of the state space.

Graph Minor Theory is a powerful, modern mathematical
tool. Many properties are preserved or bounded by taking
minors. If a graph H ≤ G and G can be drawn in some
topological space without edge crossings (e.g., a planar
graph, or a generalization thereof) then H can be too. H

is no more complex (in a topological sense) than G.
It may be initially difficult for a reader unfamiliar with

graph minor theory to see the consequences of minor
ordering. Recall the easier-to-grasp concept introduced first
that if Hk ≤ Gk , and H and G are distinct SRS motion
models, then plans for the hardware of H can be run on
the hardware of G, e.g., H could be a metamodularization of
G. Generalizing this, we can now see that if Hi ≤ Hi+1 that
plans for the Hi reconfiguration graph can be instantiated on
the same hardware, differing only in that an extra subunit
has been added (Hi+1). Thus, plans in Hi can be reused, and
augmented, to form plans in Hi+1, so planning in these well-
ordered spaces can be achieved in an incremental, local and
recursive manner.

In contrast, the hard planning spaces, like the Ghrist model,
do not permit this efficient strategy. As Gi is not a minor of
Gi+1 this implies that both edge deletions and additions must
be used to modify Gi+1 into Gi (and in fact, vice versa). So,
a plan that worked for a Gi planning task may not always
operate in an analogous manner for the Gi+1 case, because it
may of utilized an edge in the reconfiguration graph that no
longer exists.

Like the subset relation, the graph minor relation induces
a partial order on a set of elements. Partial orders can be
summarized graphically using a nested set notation. The
observations in this section about how the Ghrist state spaces
relate to the Surface state spaces and between themselves
using the graph minor relation are summarized in Fig. 18.

7. Discussion
Self-reconfiguring systems are a desirable future robotic
technology. Unfortunately, practical implementations of SRS
tend to have awkward motion constraints that make planning
computationally difficult. To get the full benefits of SRSs

we require efficient motion planning algorithms so that
SRS deployments can reconfigure on demand in response
to environmental challenges.

So far, efficient motion planning algorithms have
been developed on a somewhat ad hoc basis, wherein
researchers have looked carefully at each instantiation
of SRS architectures and carefully chosen motion
catalog restrictions. So far, we have lacked a theoretical
understanding of why some classes of SRS are good to plan
within and some are not. Our work is an attempt to elucidate
the structure of SRS reconfiguration spaces, which could be
exploited in planning algorithms. We applied graph-theoretic
techniques to sample the reconfiguration space in order to
quantify the presence of bottlenecks, and we identified a
graph property that separated an easy to plan with SRS model
from a harder one. These are general methodologies with
computational implications for a much larger class of SRS.

Metamodularization has been a common tactic in the
SRS community for isolating troublesome motion constraints
within an abstraction. Metamodularization often involves the
definition of a tunneling procedure that allows a peripheral
metamodule to appear anywhere else on the perimeter of the
configuration. The unconstrained movement of metamodules
around the perimeter using a tunneling procedure is similar
to the Surface model’s long-move motion primitives (though
the Surface model does not permit movements to locations
on the perimeter that cause Surface violations). Both
metamodularization and the Surface model configuration
graphs are well ordered by the graph minor relationship,
which we believe goes some way towards explaining why
these approaches make planning easier. It is clear that the
Surface model’s motion catalog is far less restrictive than
the strategy offered by metamodularization though. The
configurations adhering to the Surface model’s constraints
occupy a much larger volume of HMR configurations,
and thus sacrifice less generality in the configurations
that can be planned with efficiently than an alternative
metamodularization approach would.

The reason why Surface constraints are significantly less
restrictive is because they are defined as addition local
constraints describing where a subunit cannot stop along a
motion path. There is no restriction that the local constraints
to be defined in global terms (e.g., at specific points on
a globally defined grid spacing as in metamodularization).
It seems entirely plausible that with a set of geometric
path primitives (path segments and perhaps more generally
branches), and with the insights of this paper (keeping
algebraic connectivity high, and looking for graph minor
ordering), that a set of local constraints that constrain
an underlying model only a little, but simplify planning
significantly, can be elucidated automatically.

Constraining a motion model only a little implies that only
a small volume of the target general state space cannot be
represented. In previous work,12 we utilized the Surface state
space as an efficient basis for long range planning across the
more general Claytronics motion catalog, with occasional
recourse to more expensive but general search methods.
Although the overall algorithm targeted the Claytronics
motion catalog, by finding a large subspace that was efficient
to work within, the size of the “difficult” part of the remaining

http://journals.cambridge.org

http://journals.cambridge.org Downloaded: 27 Jan 2012 IP address: 129.215.149.99

A characterization of the reconfiguration space of self-reconfiguring robotic systems 85

space was greatly reduced. Thus, overall, the algorithm could
achieve near linear performance, as empirically demonstrated
using a large number of randomly generated configurations,
over a large proportion of the target state space.

8. Conclusions
SRSs need efficient motion planning algorithms, but
developing them has been difficult because of the inherent
high dimensionality and complexity (due to motion and
shape constraints) of the problem. An efficient SRS motion
planning algorithm must exploit local and global structure. In
this work we have shown that even in cases where the basic
state space of a planning problem may be complex, specific
subspaces may admit much more interesting structure that
can be gainfully utilized for planning. We have made precise
what structure is required of the subspace, and moreover, we
have shown how one can characterize this structure using
general and powerful mathematical tools that are applicable
to a large class of SRS problems. One promising direction
for future work is to try to utilize these conceptual ideas
to develop techniques that automatically discover efficient
subspaces from more complex self-reconfiguration models.

References
1. A. Abrams and R. Ghrist, “State complexes for metamorphic

robot systems,” Int. J. Robot. Res. 23(7), 809–824 (2004).
2. Z. Butler, K. Kotay, D. Rus and K. Tomita, “Generic

decentralized control for a class of self-reconfigurable robots,”
Proceedings of the 2002 International Conference on Robotics
and Automation (ICRA 2002), pp. 809–816.

3. G. S. Chirikjian, “Kinematics of a metamorphic robotic
system,” Robotics and Automation, Proceedings., 1994 IEEE
International Conference on, vol. 1, pp. 449–455.

4. F. Chung, Spectral Graph Theory (American Mathematical
Society, Providence, RI, 1997).

5. R. Diestel, Graph Theory, vol. 173 of Graduate Texts in
Mathematics, 3rd. ed. (Springer-Verlag, Heidelberg, 2005).

6. R. Ghrist and V. Peterson, “The geometry and topology of
reconfiguration,” Adv. Appl. Math. 38, 302–323 (2007).

7. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann
and I. H. Witten, “The weka data mining software: An update,”
SIGKDD Explor. Newsl. 11(1), 10–18 (2009).

8. L. E. Kavraki, P. Svestka, J.-C. Latombe and M. H.
Overmars, In Robotics and Automation, Proceedings., IEEE,
International Conference on Probabilistic Roadmaps for Path
Planning in High-Dimensional Configuration Spaces, pp. 566–
580 (1997).

9. B. T. Kirby, B. Aksak, J. D. Campbell, J. F. Hoburg, T. C.
Mowry, P. Pillai and S. C. Goldstein, “A modular robotic
system using magnetic force effectors,” Intelligent Robots and
Systems, IEEE/RSJ International Conference on, pp. 2787–
2793 (29 2007-Nov. 2 2007).

10. S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization
by simulated annealing,” Science 220, 671–679 (1983).

11. T. Larkworthy, G. Hayes and S. Ramamoorthy, “General
motion planning methods for self-reconfiguration planning,”
Towards Auton. Robot. Sys. (2009).

12. T. Larkworthy and S. Ramamoorthy, “An effecient algorithm
for self-reconfiguration planning in a modular robot,” In
Robotics and Automation, Proceedings., IEEE International
Conference on, pp. 5139–5146 (2010).

13. S. M. LaValle, Planning Algorithms (Cambridge University
Press, Cambridge, U.K., 2006).

14. S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita
and S. Kokaji, “M-tran: Self-reconfigurable modular robotic
system,” Mechatron., IEEE/ASME Trans. 7(4), 431–441
(2002).

15. A. Pamecha, C. Chiang, D. Stein and G. Chirikjian, “Design
and implementation of metamorphic robots,” In The ASME
Design Engineering Technical Conference and Computers in
Engineering Conference (1996).

16. A. Pamecha, I. Ebert-Uphoff and G. Chirikjian, “Useful metrics
for modular robot motion planning,” Robot. Automat., IEEE
Trans. 13(4), 531–545 (Aug 1997).

17. R. J. Quinlan, C4.5: Programs for Machine Learning (Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993).

18. J. Reif and S. Slee, “Optimal kinodynamic motion planning for
2d reconfiguration of self-reconfigurable robots,” Robot. Sci.
Syst. (2007).

19. D. Rus and M. Vona, “Crystalline robots: Self-reconfiguration
with compressible unit modules,” Auton. Robots 10(1), 107–
124 (2001).

20. S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach (Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1995).

http://journals.cambridge.org

