2,911 research outputs found

    In the complement of a dominating set

    Get PDF
    A set D of vertices of a graph G=(V,E) is a dominating set, if every vertex of D\V has at least one neighbor that belongs to D. The disjoint domination number of a graph G is the minimum cardinality of two disjoint dominating sets of G. We prove upper bounds for the disjoint domination number for graphs of minimum degree at least 2, for graphs of large minimum degree and for cubic graphs.A set T of vertices of a graph G=(V,E) is a total dominating set, if every vertex of G has at least one neighbor that belongs to T. We characterize graphs of minimum degree 2 without induced 5-cycles and graphs of minimum degree at least 3 that have a dominating set, a total dominating set, and a non-empty vertex set that are disjoint.A set I of vertices of a graph G=(V,E) is an independent set, if all vertices in I are not adjacent in G. We give a constructive characterization of trees that have a maximum independent set and a minimum dominating set that are disjoint and we show that the corresponding decision problem is NP-hard for general graphs. Additionally, we prove several structural and hardness results concerning pairs of disjoint sets in graphs which are dominating, independent, or both. Furthermore, we prove lower bounds for the maximum cardinality of an independent set of graphs with specifed odd girth and small average degree.A connected graph G has spanning tree congestion at most s, if G has a spanning tree T such that for every edge e of T the edge cut defined in G by the vertex sets of the two components of T-e contains at most s edges. We prove that every connected graph of order n has spanning tree congestion at most n^(3/2) and we show that the corresponding decision problem is NP-hard

    Total Domishold Graphs: a Generalization of Threshold Graphs, with Connections to Threshold Hypergraphs

    Full text link
    A total dominating set in a graph is a set of vertices such that every vertex of the graph has a neighbor in the set. We introduce and study graphs that admit non-negative real weights associated to their vertices such that a set of vertices is a total dominating set if and only if the sum of the corresponding weights exceeds a certain threshold. We show that these graphs, which we call total domishold graphs, form a non-hereditary class of graphs properly containing the classes of threshold graphs and the complements of domishold graphs, and are closely related to threshold Boolean functions and threshold hypergraphs. We present a polynomial time recognition algorithm of total domishold graphs, and characterize graphs in which the above property holds in a hereditary sense. Our characterization is obtained by studying a new family of hypergraphs, defined similarly as the Sperner hypergraphs, which may be of independent interest.Comment: 19 pages, 1 figur
    corecore