12,859 research outputs found

    Simultaneous Representation of Proper and Unit Interval Graphs

    Get PDF
    In a confluence of combinatorics and geometry, simultaneous representations provide a way to realize combinatorial objects that share common structure. A standard case in the study of simultaneous representations is the sunflower case where all objects share the same common structure. While the recognition problem for general simultaneous interval graphs - the simultaneous version of arguably one of the most well-studied graph classes - is NP-complete, the complexity of the sunflower case for three or more simultaneous interval graphs is currently open. In this work we settle this question for proper interval graphs. We give an algorithm to recognize simultaneous proper interval graphs in linear time in the sunflower case where we allow any number of simultaneous graphs. Simultaneous unit interval graphs are much more "rigid" and therefore have less freedom in their representation. We show they can be recognized in time O(|V|*|E|) for any number of simultaneous graphs in the sunflower case where G=(V,E) is the union of the simultaneous graphs. We further show that both recognition problems are in general NP-complete if the number of simultaneous graphs is not fixed. The restriction to the sunflower case is in this sense necessary

    On the threshold-width of graphs

    Full text link
    The GG-width of a class of graphs GG is defined as follows. A graph G has GG-width k if there are k independent sets N1,...,Nk in G such that G can be embedded into a graph H in GG such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs

    Fast Scramblers, Horizons and Expander Graphs

    Full text link
    We propose that local quantum systems defined on expander graphs provide a simple microscopic model for thermalization on quantum horizons. Such systems are automatically fast scramblers and are motivated from the membrane paradigm by a conformal transformation to the so-called optical metric.Comment: 22 pages, 2 figures. Added further discussion in section 3. Added reference
    • …
    corecore