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Abstract
In a confluence of combinatorics and geometry, simultaneous representations provide a way to realize
combinatorial objects that share common structure. A standard case in the study of simultaneous
representations is the sunflower case where all objects share the same common structure. While the
recognition problem for general simultaneous interval graphs – the simultaneous version of arguably
one of the most well-studied graph classes – is NP-complete, the complexity of the sunflower case
for three or more simultaneous interval graphs is currently open. In this work we settle this question
for proper interval graphs. We give an algorithm to recognize simultaneous proper interval graphs in
linear time in the sunflower case where we allow any number of simultaneous graphs. Simultaneous
unit interval graphs are much more “rigid” and therefore have less freedom in their representation.
We show they can be recognized in time O(|V | · |E|) for any number of simultaneous graphs in the
sunflower case where G = (V,E) is the union of the simultaneous graphs. We further show that
both recognition problems are in general NP-complete if the number of simultaneous graphs is not
fixed. The restriction to the sunflower case is in this sense necessary.
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1 Introduction

Given a family of sets R, the corresponding intersection graph G has a vertex for each set
and two vertices are adjacent if and only if their sets have a non-empty intersection. If all
sets are intervals on the real line, then R is an interval representation of G and G is an
interval graph; see Figure 1.

In the context of intersection graph classes, much work has been devoted to efficiently
computing a representation, which is a collection of sets or geometric objects having an
intersection graph that is isomorphic to a given graph. For many well-known graph classes,
such as interval graphs and chordal graphs, this is a straightforward task [14, 28]. However,
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Figure 1 (a) A graph, with (b) an interval representation and (c) proper interval representation.

often it is desirable to consistently represent multiple graphs that have subgraphs in common.
This is true, for instance, in realizing schedules with shared events, embedding circuit graphs
of adjacent layers on a computer chip, and visualizing the temporal relationship of graphs
that share a common subgraph [19]. Likewise, in genome reconstruction, we can ask if a
sequence of DNA can be reconstructed from strands that have sequences in common [13].

Simultaneous representations capture this in a very natural way. Given simultaneous
graphs G1, G2, . . . , Gk where each pair of graphs Gi, Gj share some common subgraph, a
simultaneous representation asks for a fixed representation of each vertex that gives a valid
representation of each Gi. This notion is closely related to partial representation extension,
which asks if a given (fixed) representation of a subgraph can be extended to a representation
of the full graph. Partial representation extension has been extensively studied for graph
classes such as interval graphs [20], circle graphs [8], as well as proper and unit interval
graphs [20]. For interval graphs, Bläsius and Rutter [3] have even shown that the partial
interval representation problem can be reduced to a simultaneous interval representation
problem on two graphs in linear time.

Simultaneous representations were first studied in the context of embedding graphs [2, 7],
where the goal is to embed each simultaneous graph without edge crossings while shared
subgraphs have the same induced embedding. Unsurprisingly, many variants are NP-
complete [12, 26, 1, 11]. The notion of simultaneous representation of general intersection
graph classes was introduced by Jampani and Lubiw [19], who showed that it is possible to
recognize simultaneous chordal graphs with two graphs in polynomial time, and further gave a
polynomial time algorithm to recognize simultaneous comparability graphs and permutation
graphs with two or more graphs that share the same subgraph (the sunflower case). They
further showed that recognizing three or more simultaneous chordal graphs is NP-complete.

Golumbic et al. [15] introduced the graph sandwich problem for a graph class Π. Given a
vertex set V and edge sets E1 ⊆ E2 ⊆

(
V
2
)
it asks whether there is an edge set E1 ⊆ E ⊆ E2

such that the sandwich graph G = (V,E) is in Π. Jampani and Lubiw showed that if Π is an
intersection graph class, then recognizing k simultaneous graphs in Π in the sunflower case is
a special case of the graph sandwich problem where (V,E2 \ E1) is a k-partite graph [19].

We consider simultaneous proper and unit interval graphs. An interval graph is proper if
in an interval representation no interval properly contains another one (see Figure 1), and it
is unit if all intervals have length one. Interestingly, while proper and unit interval graphs
are the same graph class as shown by Roberts [25], simultaneous unit interval graphs differ
from simultaneous proper interval graphs; see Figure 2. Unit interval graphs are intersection
graphs and therefore the graph sandwich paradigm described by Jampani and Lubiw applies.
Proper interval graphs are not since in a simultaneous representation intervals of distinct
graphs may contain each other which means that the intersection graph of all intervals in
the simultaneous representation is not proper.

Sunflower (unit) interval graphs are a generalization of probe (proper) interval graphs,
where each sunflower graph has only one non-shared vertex. Both variants of probe graphs
can be recognized in linear time [22, 23].
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Figure 2 A simultaneous proper interval representation of a sunflower graph G consisting of
two paths G1 = (s1, a, b, c, s2) (dashed) and G2 = (s1, d, s2) (dotted) with shared start and end
s1, s2 (bold). They have no simultaneous unit interval representation: The intervals a and c enforce
that b lies between s1 and s2. Interval d therefore includes b in every simultaneous proper interval
representation. In particular, not both can have size one.

Simultaneous interval graphs were first studied by Jampani and Lubiw [18] who gave a
O(n2 lgn)-time recognition algorithm for the special case of two simultaneous graphs. Bläsius
and Rutter [3] later showed how to recognize two simultaneous interval graphs in linear time.
Bok and Jedličková showed that the recognition of an arbitrary number of simultaneous
interval graphs is in general NP-complete [4]. However, the complexity for the sunflower case
with more than two simultaneous graphs is still open.

Our Results. We settle these problems with k not fixed for simultaneous proper and unit
interval graphs – those graphs with an interval representation where no interval properly
contains another and where all intervals have unit length, respectively [10, 27, 9, 16]. For
the sunflower case, we provide efficient recognition algorithms. The running time for proper
interval graphs is linear, while for the unit case it is O(|V | · |E|) where G = (V,E) is the union
of the sunflower graphs. In the full version we prove NP-completeness for the non-sunflower
case. The reductions are similar to the simultaneous independent work of Bok and Jedličková
for simultaneous interval graphs [4].

Organization. We begin by introducing basic notation and existing tools throughout Sec-
tion 2. In Section 3 we give a characterization of simultaneous proper interval graphs, from
which we develop an efficient recognition algorithm. In Section 4 we characterize simultaneous
proper interval graphs that can be simultaneous unit interval graphs, and then exploit this
property to efficiently search for a representation among simultaneous proper interval graph
representations. Proofs of lemmas and theorems marked with ? are omitted.

2 Preliminaries

In this section we give basic notation, definitions and characterizations. Section 2.1 collects
basic concepts on graph theory, orderings, and PQ-trees. Section 2.2 introduces (proper)
interval graphs and presents relations between the representations of such graphs and
their induced subgraphs. Finally, Section 2.3 introduces the definition and notation of
simultaneous graphs.

2.1 Graphs, Orderings, and PQ-trees
Unless mentioned explicitly, all graphs in this paper are undirected. For a graph G = (V,E)
we denote its size |G| := |V |+ |E|.

Let σ be a binary relation. Then we write a1 ≤σ a2 for (a1, a2) ∈ σ, and we write
a1 <σ a2 if a1 ≤σ a2 and a1 6= a2. We omit the subscript and simply use < and ≤ if the
ordering it refers to is clear from the context. We denote the reversal of a linear order σ by
σr, and we use ◦ to concatenate linear orders of disjoint sets.

ESA 2019
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A PQ-tree is a data structure for representing sets of linear orderings of a ground set
X. Namely, given a set C ⊆ 2X , a PQ-tree on X for C is a tree data structure T that
represents the set Consistent(T ) containing exactly the linear orders of X in which the
elements of each set C ∈ C are consecutive. The PQ-tree T can be computed in time
O(|X|+

∑
C∈C |C|) [6]. Given a PQ-tree T on the set X and a subset X ′ ⊆ X, there exists a

PQ-tree T ′, called the projection of T to X ′, that represents exactly the linear orders of X ′
that are restrictions of orderings in Consistent(T ). For any two PQ-trees T1 and T2 on the
set X, there exists a PQ-tree T with Consistent(T ) = Consistent(T1)∩Consistent(T2),
called the intersection of T1 and T2. Both the projection and the intersection can be computed
in O(|X|) time [5].

2.2 Interval Graphs, Proper Interval Graphs, and Their Subgraphs

An interval representation R = {Iv | v ∈ V } of a graph G = (V,E) associates with each
vertex v ∈ V an interval Iv = [x, y] of real numbers such that for each pair of vertices u, v ∈ V
we have Iu ∩ Iv 6= ∅ if and only if {u, v} ∈ E, i.e., the intervals intersect if and only if the
corresponding vertices are adjacent. An interval representation R is proper if no interval
properly contains another one, and it is unit if all intervals have length 1. A graph is an
interval graph if and only if it admits an interval representation, and it is a proper (unit)
interval graph if and only if it admits a proper (unit) interval representation. It is well-known
that proper and unit interval graphs are the same graph class.

I Proposition 1 ([25]). A graph is a unit interval graph if and only if it is a proper
interval graph.

However, this does not hold in the simultaneous case where every simultaneous unit
interval representation is clearly a simultaneous proper interval representation of the same
graph, but not every simultaneous proper interval representation implies a simultaneous unit
interval representation; see Figure 2.

We use the well-known characterization of proper interval graphs using straight enumer-
ations [10]. Two adjacent vertices u, v ∈ V are indistinguishable if we have N [u] = N [v]
where N [u] = {v : uv ∈ E(H)} ∪ {u} is the closed neighborhood. Being indistinguishable
is an equivalence relation and we call the equivalence classes blocks of G. We denote the
block of G that contains vertex u by B(u,G). Note that for a subgraph G′ ⊆ G the block
B(u,G′) may contain vertices in V (G′) \B(u,G) that have the same neighborhood as u in
G′ but different neighbors in G. Two blocks B, B′ are adjacent if and only if uv ∈ E for
(any) u ∈ B and v ∈ B′. A linear order σ of the blocks of G is a straight enumeration of G if
for every block, the block and its adjacent blocks are consecutive in σ. A proper interval
representation R defines a straight enumeration σ(R) by ordering the intervals by their
starting points and grouping together the blocks. Conversely, for each straight enumeration
σ, there exists a corresponding representation R with σ = σ(R) [10]. A fine enumeration
of a graph H is a linear order η of V (H) such that for u ∈ V (H) the closed neighborhood
NH [u] is consecutive in η.

I Proposition 2 ([24, 10, 17]). (i) A graph is a proper interval graph if and only if it has a
fine enumeration. (ii) A graph is a proper interval graph if and only if it admits a straight
enumeration. (iii) A straight enumeration of a connected proper interval graph is unique
up to reversal.
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2.3 Simultaneous Graphs
A simultaneous graph is a tuple G = (G1, . . . , Gk) of graphs Gi that may each share vertices
and edges. Note that this definition differs from the one we gave in the introduction. This
way the input for the simultaneous representation problem is a single entity. The size
|G| of a simultaneous graph is

∑k
i=1 |Gi|. We call G connected, if

⋃k
i=1 Gi is connected.

A simultaneous (proper/unit) interval representation R = (R1, . . . , Rk) of G is a tuple of
representations such that Ri ∈ R is a (proper/unit) interval representation of graph Gi and
the intervals representing shared vertices are identical in each representation. A simultaneous
graph is a simultaneous (proper/unit) interval graph if it admits a simultaneous (proper/unit)
interval representation.

An important special case is that of sunflower graphs. The simultaneous graph G is a
sunflower graph if each pair of graphs Gi, Gj with i 6= j shares exactly the same subgraph S,
which we then call the shared graph. Note that, for G to be a simultaneous interval graph, it
is a necessary condition that Gi ∩Gj is an induced subgraph of Gi and Gj for i, j = 1, . . . , k.
In particular, in the sunflower case the shared graph S must be an induced subgraph of
each Gi. The following lemma allows us to restrict ourselves to instances whose union graph⋃
G =

⋃k
i=1 Gi is connected.

I Lemma 3 (?). Let G = (G1, . . . , Gk) be a simultaneous graph and let C1, . . . , Cl be the
connected components of

⋃
G. Then G is a simultaneous (proper) interval graph if and only if

each of the graphs Gi = (G1 ∩ Ci, . . . , Gk ∩ Ci), i = 1, . . . , l is a simultaneous (proper/unit)
interval graph.

3 Sunflower Proper Interval Graphs

In this section, we deal with simultaneous proper interval representations of sunflower graphs.
We first present a combinatorial characterization of the simultaneous graphs that admit
such a representation. Afterwards, we present a simple linear-time recognition algorithm.
Finally, we derive a combinatorial description of all the combinatorially different simultaneous
proper interval representations of a connected simultaneous graph, which is a prerequisite for
the unit case.

3.1 Characterization
Let G = (V,E) be a proper interval graph with straight enumeration σ and let VS ⊆ V be a
subset of vertices. We call σ compatible with a linear order ζ of VS if, we have for u, v ∈ VS
that u ≤ζ v implies B(u,G) ≤σ B(v,G).

I Lemma 4. Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES).
Then G admits a simultaneous proper interval representation R if and only if there exists a
linear order ζ of VS and straight enumerations σi for each Gi that are compatible with ζ.

Proof Sketch. For a given representation R the straight enumerations σi = σ(Ri) and linear
order ζ of VS given by their left endpoints in R clearly satisfy the lemma. Conversely
we build a linear order of interval endpoints from each σi that equals a proper interval
representation. As each σi is compatible with ζ, all endpoint orderings allow the same
ordering for vertices in S, thus permitting one global ordering of all endpoints. Drawing
the intervals according to this ordering then yields a simultaneous representation R since it
extends each individual ordering. J

ESA 2019
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Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES) and for each
Gi ∈ G let σi be a straight enumeration of Gi. We call the tuple (σ1, . . . , σk) a simultaneous
enumeration if for any i, j ∈ {1, . . . , k} and u, v ∈ VS we have B(u,Gi) <σi

B(v,Gi) ⇒
B(u,Gj) ≤σj B(v,Gj). That is, the blocks containing vertices of the shared graph are not
ordered differently in any straight enumeration.

I Theorem 5 (?). Let G = (G1, . . . , Gk) be a sunflower graph. There exists a simultaneous
proper interval representation R = (R1, . . . , Rk) of G if and only if there is a simultaneous
enumeration (σ1, . . . , σk) of G. If (σ1, . . . , σk) exists, there also exists R with σ(Ri) = σi for
each Ri ∈ R.

3.2 A Simple Recognition Algorithm
In this section we develop a very simple recognition algorithm for sunflower graphs that
admits a simultaneous proper interval representation based on Theorem 5.

Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S = (VS , ES). By
Proposition 2, for each graph Gi, there exists a PQ-tree T ′i that describes exactly the fine
enumerations of Gi. We denote by Ti = T ′i |S the projection of Ti to the vertices in S.
The tree Ti thus describes all proper interval representations of S that can be extended
to a proper interval representation of Gi. Let T denote the intersection of T1, . . . , Tk. By
definition, T represents all proper interval representations of S that can be extended to
a proper interval representation of each graph Gi. Thus, G admits a simultaneous proper
interval representation if and only if T is not the null-tree.

If T is not the null-tree, we can obtain a simultaneous representation by choosing any
ordering O ∈ Consistent(T ) and constructing a simultaneous representation S of S. Using
the algorithm of Klavík et al. [20], we can then independently extend S to representations Ri
of Gi. Since the trees Ti can be computed in time linear in the size of the graph Gi, and
the intersection of two trees takes linear time, the testing algorithm takes time linear in the
total size of the Gi. The representation extension of Klavík et al. [20] runs in linear time.
We therefore have the following theorem.

I Theorem 6. Given a sunflower graph G = (G1, . . . , Gk), it can be tested in linear time
whether G admits a simultaneous proper interval representation.

3.3 Combinatorial Description of Simultaneous Representations
Let G be a sunflower proper interval graph with shared graph S and simultaneous represen-
tation R. Then, each representation R ∈ R uses the same intervals for vertices of S and
implies the same straight enumeration σS(R) = σS(R) = σ({Iv ∈ R : v ∈ V (S)}).

I Lemma 7. Let G be a connected sunflower proper interval graph with shared graph S.
Across all simultaneous proper interval representations R′ of G, the straight enumeration
σS(R) of S is unique up to reversal.

Proof. Let R be a simultaneous representation of G and σS(R) the straight enumeration
of S induced by R. Since G is connected, for any two blocks Bi and Bi+1 of S consecutive
in σS(R), there exists a graph G ∈ G such that Bi and Bi+1 are in the same connected
component of G. Since S is an induced subgraph of G, for any two vertices u, v ∈ V (S)
with B(u, S) 6= B(v, S) we have B(u,G) 6= B(v,G). This means that a straight enumeration
of G implies a straight enumeration of S. Additionally, the straight enumeration of each
connected component of G is unique up to reversal by Proposition 2. As a result, for any
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A B C

Figure 3 Simultaneous proper interval representation of G1 (green solid), G2 (red dotted), G3

(blue dashed) with shared graph S (black bold). S has three blocks A, B, C. We denote the
component of Gi containing a block D by CiD. C2

A, C2
B , C3

B , C2
C are loose. C2

A is independent.
(C2

B , C
3
B) is a reversible part. (C2

C) is not a reversible part, since C1
C is aligned at C and not loose.

proper interval representation R of G, the blocks Bi and Bi+1 are consecutive in σS(R).
This holds for any two consecutive blocks in σ, which means that the consecutivity of all
blocks of S is fixed for all simultaneous representations of G. As a consequence σS(R) is
fixed up to complete reversal. J

Let G be a proper interval graph consisting of the connected components C1, . . . , Ck with
straight enumerations σ1, . . . , σk. Let σ1 ◦ · · · ◦ σk be a straight enumeration of G. Then
we say the straight enumeration σ′ = σ1 ◦ · · · ◦ σi−1 ◦ σri ◦ σi+1 ◦ · · · ◦ σk is obtained from σ

by reversal of Ci. For a sunflower graph G containing G with shared graph S = (VS , ES),
we call a component C = (VC , EC) of G loose, if all vertices VS ∩ VC are in the same block
of S. Reversal of loose components is the only “degree of freedom” among simultaneous
enumerations, besides full reversal, and is formally shown in the full version.

To obtain a complete characterization, we now introduce additional terms to specify
which reversals result in simultaneous enumerations (see Figure 3). Let G = (G1, . . . , Gk)
be a connected sunflower proper interval graph with shared graph S. We say a component
C of a graph in G aligns two vertices u, v ∈ S if they are in different blocks of C, i.e.,
B(u,C) 6= B(v, C). If in addition u and v are in the same block B of S, we say C is oriented
at B. If there is another component C ′ among graphs in G oriented at B, the orientation of
their straight enumerations in a simultaneous enumeration of G are dependent; that is, they
cannot be reversed independently. This is shown formally in the full version.

For each block B of S, let C(B) be the connected components among graphs in G oriented
at B. Since a component may contain B without aligning vertices, we have 0 ≤ |C(B)| ≤ k.
If C(B) contains only loose components, we call it a reversible part. Note that a reversible
part C(B) contains at most one component of each graph Gi. Additionally, we call a loose
component C independent, if it does not align any two vertices of S. Let (σ1, . . . , σk) and
(σ′1, . . . , σ′k) be tuples of straight enumerations of G1, . . . , Gk. We say (σ′1, . . . , σ′k) is obtained
from (σ1, . . . , σk) through reversal of reversible part C(B), if σ′1, . . . , σ′k are obtained by
reversal of all components in C(B).

I Theorem 8 (?). Let G = (G1, . . . , Gk) be a connected sunflower graph with shared graph
S and simultaneous enumeration ρ = (σ1, . . . , σk). Then ρ′ = (σ′1, . . . , σ′k) is a simultaneous
enumeration of G if and only if ρ′ can be obtained from ρ or ρr through reversal of independent
components and reversible parts.

4 Sunflower Unit Interval Graphs

In the previous section we characterized all simultaneous enumerations for a sunflower proper
interval graph G. We say a simultaneous proper/unit interval representation of a sunflower
graph G realizes a simultaneous enumeration ζ = (ζ1, . . . , ζk) of ζ, if for i ∈ {1, . . . , k} the
representation of Gi corresponds to the straight enumeration ζi. In Section 4.1 we provide a
criterion which determines for a given simultaneous enumeration ζ of G whether there is a
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Figure 4 (a): The forbidden configuration of Corollary 11. (b)–(e): The four implications of
Corollary 12.

simultaneous unit interval representation of G that realizes ζ. Namely, the criterion is the
avoidance of a certain configuration in a partial vertex order of

⋃
G induced by ζ. In Section 4.2

we combine these findings to efficiently recognize simultaneous unit interval graphs.

4.1 Simultaneous Enumerations of Sunflower Unit Interval Graphs
We first obtain a combinatorial characterization by reformulating the problem of finding a
representation as a restricted graph sandwich problem [15].

I Lemma 9 (?). A sunflower graph G has a simultaneous unit interval representation that
realizes a simultaneous enumeration ζ = (ζ1, . . . , ζk) if and only if there is some graph H
with V (H) = V (G) that contains the graphs G1, . . . , Gk as induced subgraphs and has a fine
enumeration σ such that for i ∈ {1, . . . , k} straight enumeration ζi is compatible with σ on Vi.

Our approach is to obtain more information on what graph H and the fine enumeration
σ must look like. We adapt a characterization of Looges and Olariu [21] to obtain four
implications that can be used given only partial information on H and σ (as given by
Lemma 9); see Figure 4. For the figures in this section we use arrows to represent a partial
order between two vertices. We draw them solid green if they are adjacent, red dotted if they
are non-adjacent in some graph Gi, and black dashed if they may or may not be adjacent.

I Theorem 10 (Looges and Olariu [21]). A vertex order of a graph H = (V,E) is a fine
enumeration if and only if for v, u, w ∈ V with v <σ u <σ w and vw ∈ E we have vu, uw ∈ E.

I Corollary 11 (?). A vertex order of a graph H = (V,E) is a fine enumeration if and only
if there are no four vertices v, u, x, w ∈ V with v ≤σ u ≤σ x ≤σ w and vw ∈ E and ux 6∈ E.

I Corollary 12. Let H = (V,E) be a graph with fine enumeration σ. Let v, u, x, w ∈ V and
u ≤σ x as well as v ≤σ w. Then we have (see Figure 4):
(i) vw ∈ E ∧ v ≤σ u ∧ x ≤σ w ⇒ ux ∈ E
(ii) ux 6∈ E ∧ v ≤σ u ∧ x ≤σ w ⇒ vw 6∈ E
(iii) vw ∈ E ∧ ux 6∈ E ∧ v ≤σ u⇒ w <σ x

(iv) vw ∈ E ∧ ux 6∈ E ∧ x ≤σ w ⇒ u <σ v.

Now we introduce the forbidden configurations for simultaneous enumerations of sunflower
unit interval graphs. Throughout this section let G = (G1, . . . , Gk) be a sunflower graph with
shared graph S and simultaneous enumeration ζ = (ζ1, . . . , ζk). Furthermore, let Vi = V (Gi)
and Ei = E(Gi), for i ∈ {1, . . . , k}. Finally, let V = V1∪ · · ·∪Vk. For a straight enumeration
η of some graph H we say for u, v ∈ V (H) that u <η v, if u is in a block before v, and we
say u ≤η v, if u = v or u <η v. We call ≤η the partial order on V (H) corresponding to η.
Note that for distinct u, v in the same block we have neither u >η v nor u ≤η v. We write
u ≤i v and u <i v instead of u ≤ζi

v and u <ζi
v, respectively.
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Figure 5 A sunflower graph G = (G1, G2) with shared vertices s1, s2 (black, bold). Let ζ be the
simultaneous enumeration realized by the given simultaneous proper interval representation. In
(G1, ζ1) we have the (s1, s2)-chain C = (s1, a, b, c, s2) of size 5 (green, solid). In (G2, ζ2) we have the
(s1, s2)-bar B = (s1, d, e, f, s2) of size 5 (red, dotted). Hence, sunflower graph G has the conflict
(C,B) for the simultaneous enumeration ζ.

s1 s2
b1 b2 b3

c1 c2 c3

b1 b2 b3

c1 c2 c3

s1 s2

 

(a) (b)

G1

G2

Figure 6 (a): A simultaneous enumeration with conflict. (b): Result with added orderings after
scouting, starting at s2 and finding the conflict in s1.

Let u, v ∈ V (S) with u 6= v. For i ∈ {1, . . . , k} a (u, v)-chain of size m ∈ N in
(Gi, ζi) is a sequence (u = c1, . . . , cm = v) of vertices in Vi with c1 <i · · · <i cm that
corresponds to a path in Gi. A (u, v)-bar between u and v of size m ∈ N in (Gi, ζi) is a
sequence (u = b1, . . . , bm = v) of vertices in Vi with b1 <i · · · <i bm that corresponds to an
independent set in Gi. An example is shown in Figure 5. If there is a (u, v)-chain C in Gi
of size l ≥ 2 and a (u, v)-bar B in (Gj , ζj) of size at least l, then we say that (C,B) is a
(u, v)-(chain-bar-)conflict and that G has conflict (C,B) for ζ. Note that one can reduce
the size of a larger (u, v)-bar by removing intervals between u and v. Thus, we can always
assume that in a conflict, we have a bar and a chain of the same size l ≥ 2. Assume G has a
simultaneous unit interval representation realizing ζ. If a graph G ∈ G has a (u, v)-chain of
size l ≥ 2, then the distance between the intervals Iu, Iv for u, v is smaller than l − 2. On
the other hand, if a graph G ∈ G has a (u, v)-bar of size l, then the distance between Iu, Iv
is greater than l − 2. Hence, sunflower graph G has no conflict. The result of this section is
that the absence of conflicts is not only necessary, but also sufficient.

I Theorem 13. Let G be a sunflower proper interval graph with simultaneous enumeration
ζ. Then G has a simultaneous unit interval representation that realizes ζ if and only if G has
no conflict for ζ.

Recall that Vi = V (Gi) for i ∈ {1, . . . , k} and V = V1 ∪ · · · ∪ Vk. Let α? be the union of
the partial orders on V1, . . . , Vk corresponding to ζ1, . . . , ζk. Set α to be the transitive closure
of α?. We call α the partial order on V induced by ζ. The rough idea is that the partial
order on V induced by the simultaneous enumeration ζ is extended in two sweeps to a fine
enumeration of some graph H that contains G1, . . . , Gk as induced subgraphs; see Figures 6,
7. For (u, v) ∈ α we consider u to be to the left of v. The first sweep (scouting) goes from
the right to the left and makes only necessary extensions according to Corollary 12 (iv). If
there is a conflict, then it is found in this step. Otherwise, we can greedily order the vertices
on the way back by additionally respecting Corollary 12 (iii) (zipping) to obtain a linear
extension where both implications are satisfied. In the last step we decide which edges H
has by respecting Corollary 12 (i).

For h ∈ {1, . . . , k} we say two vertices u, v ∈ Vh are indistinguishable in G if we have
NGi(u) = NGi(v) for all i ∈ {1, . . . , k} with u, v ∈ Vi. In that case u, v can be represented
by the same interval in any simultaneous proper interval representation. Thus, we identify
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a1 a2

d1 d2 d3

s1 s2 s1 s2 s1 s2
a1 a2 a1 a2

d1 d2 d3 d1 d2 d3

(a) (b) (c)

G1

G2 s1 s2a1 a2

d1 d2 d3

(d)

Figure 7 (a): A simultaneous enumeration without conflict. (b): Result with added orderings
after scouting. (c): Resulting linear order after zipping. Note that a1 comes before d2 in the linear
order thanks to scouting. Choosing otherwise would imply a contradiction at s2. (d): Resulting unit
interval representation for the sandwich graph.

vj wj

ui x

Gj

Gi

X

u

v

Ri,j

w

(a)

v wj

u x

Gj

Gi

s

(b)

v wj

u x

Gj

Gi

c3 c2

s

b3 b2

(c)

Figure 8 (a): The vertices ui, vj , wj as derived from x and X. The introduced ordering (ui, vj)
is marked with Ri,j . (b),(c): Both cases of a chain-bar pair for u and v.

indistinguishable vertices. If u, v ∈ Vh are not indistinguishable, then we have NGj (u) 6=
NGj

(v) for some j ∈ {1, . . . , k}. In that case u, v are ordered by ζj and therefore by α. That
is, we can assume α to be a linear order on Vi for i ∈ {1, . . . , k}. Note that u, v may be
ordered even if they are indistinguishable in some input graphs.

For i ∈ {1, . . . , k}, let Gci = (Vi,
(
Vi

2
)
\ Ei) be the complement of Gi. We set E =

{(u, v) ∈ α | uv ∈ E1 ∪ · · · ∪ Ek} and F = {(u, v) ∈ α | uv ∈ E(Gc1 ∪ · · · ∪Gck)}. We call a
partial order σ on V left-closed if we have

∀v, w, u, x ∈ V : (vw ∈ E ∧ ux ∈ F ∧ x ≤σ w) ⇒ u <σ v. (1)

Note that a fine enumeration of a graph H with G1, . . . , Gk as induced subgraphs is left-closed
by Corollary 12 (iv). We describe the result of the first sweep with the following lemma.

I Lemma 14. A sunflower graph G has no conflict for a simultaneous enumeration ζ if and
only if there is a left-closed partial order τ that extends the partial order on V (G) induced by ζ.

Proof Sketch. If there is a conflict (C,B), then the partial order α induced by ζ cannot be
extended to be left-closed since then for i ∈ {1, . . . , k − 1} the i’th vertex of C and B must
be ordered and distinct while the first vertex is shared; see Figure 6.

Otherwise, we process the vertices from the right to the left and add for each of them
the implied orderings (each is considered as vertex x in the definition of left-closed). First
consider the case of just two input graphs G1, G2. Let X be the set of already processed
vertices and let σ be the current partial order. We next process a maximal vertex x ∈ V \X.
Let x ∈ Vi. Then we choose ui to be the rightmost vertex in Vi with uix ∈ F and for j 6= i

we choose wj to be the leftmost vertex in Vj with x ≤ wj and vj to be the leftmost vertex in
Vj with vjwj ∈ E; see Figure 8a. Each of ui, vj , wj may not exist. If they do, we extend σ to
σ′ by adding the ordering ui ≤σ′ vj . The other implied orderings are exactly those obtained
by transitive closure.

Two vertices u ∈ V1, v ∈ V2 are only ordered by α if there is a shared vertex s with
u ≤α s ≤α v or v ≤α s ≤α u. The key observation is that if u is ordered before v due to a
necessary extension, then there is a shared vertex s and a (v, s)-chain and a (u, s)-bar of equal
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vj = b5 wj

ui = c5 x

Gj

Gi

b4

c4

b3 b2

s

c3 c2

(a)

Gj

Gi u

v

wGh

s

b2b3b4

c2c3c4

b′2b′3

s′

c′2c′3

(b)

Figure 9 (a): Example situation for (vj , ui) ∈ τi,j \ α?. We have the (vj , s)-bar (vj , b4, b3, b2, s)
and the (ui, s)-chain (ui, c4, c3, c2, s) and obtain x ≤τi,j wj ≤τi,j b4 ≤τi,j c4 ≤τi,j x. (b): Example
situation for the transitivity of τ where we have a chain-bar pair for u, v as well as for v, w. We obtain
b4 ≤τi,j c4 ≤τi,j b

′
3 ≤τi,j c

′
3 and since u <α b4 and w <α c

′
3 we get b4 ≤τi,h c′

3 in an appropriate
induction and with τi,h being left-closed we obtain u ≤τi,h w. (The base cases for the induction
involve shared vertices and thereby only two input graphs.)

size (chain-bar pair): If we have x ≤α wj , then there is a shared vertex x ≤α s ≤α wj and
by Theorem 10 we obtain us ∈ F and vs ∈ E, which yields a chain-bar pair; see Figure 8b.
Otherwise we have a chain-bar pair for x and wj that can be extended by u and v; see
Figure 8c. With the absence of conflicts this ensures that vertices ordered according to the
left-closed property are actually distinct.

Assume a new extension would violate the property of antisymmetry. This would mean
we already had vj <σ ui, which would imply a cyclic ordering of x, wj with elements of the
(necessary) chain-bar pair for vj , ui in a prior step; see Figure 9a. Finally, for more than two
input graphs we obtain a corresponding ordering τi,j for each pair of input graphs Gi, Gj .
Let τ =

⋃
i,j∈{1,...,k} τi,j be their union. For u <τi,j v <τj,h

w we can prove u <τi,h
w by

using chain-bar pairs and induction; see Figure 9b. Hence, τ is already transitive and the
other properties are easy to verify. J

By respecting the orderings obtained by scouting we avoid wrong decisions when greedily
adding vertices to a linear ordering in the zipping step; see Figure 7.

I Lemma 15. Let G be a sunflower graph with a simultaneous enumeration ζ. There is a
left-closed linear order τ that extends the partial order α on V (G) induced by ζ if and only if
there is a left-closed partial order σ ⊇ α.

Proof Sketch. Given σ we process the vertices from the left to the right. We add in each
step a leftmost vertex u of the remaining vertices to a set U of the processed vertices that
are linearly ordered. We denote the current order by σ′. Vertex u is then ordered before
all other vertices in V \ U . To avoid that the left-closed property is violated when adding
such orderings for another vertex, we ensure our extended order σ′′ ⊇ σ′ is right-closed on U
meaning that

∀u, v ∈ U,w, x ∈ V : (vw ∈ E ∧ ux ∈ F ∧ v ≤ u)⇒ w < x. (2)

To this end, we consider the current vertex u as vertex u in the definition of right-closed
and add all implied orderings in σ′′. This means for each vertex y ∈ Y = {y ∈ V | ∃u′ ∈
U : uy ∈ E} and each vertex z ∈ Z = {z ∈ V | uz ∈ F} we set y ≤σ′′ z; see Figure 10a. We
further extend σ′′ to be transitive. Note that there are no two vertices y ∈ Y, z ∈ Z with
y ≤σ z, since σ is left-closed and for u′ ∈ U we have u′ ≤σ u. With this observation we can
verify that σ′′ is antisymmetric and left-closed; see Figure 10b. J
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u1 uu3u2

U

y

y′

z

z′

(a)

w

xu′

u

y

zv

u′′

(b)

Figure 10 (a): orderings added during a zipping step (blue dash-dotted). All vertices in
Y = {y, y′} are ordered before those in Z = {z, z′}. (b): The case for σ′′ being left-closed where
we have x ≤σ′′ w due to transitivity. This means there is some ordering (y, z) ∈ Y × Z with
x ≤σ′ y ≤σ′′ z ≤σ′ w. We further have a vertex u′′ ∈ U with u′′y ∈ E and uz ∈ F . Given vertices
u′, v ∈ V with u′x ∈ F and vw ∈ E we obtain u′ <σ′ u′′ and u <σ′ v since σ′ is left-closed. This
yields u′ <σ′′ v.

Finally, we construct a graph H = (V,E′) for which the obtained linear order τ is a
fine enumeration. We do so by setting E′ = {ux ∈ V 2 | ∃vw ∈ E : v ≤τ u <τ x ≤τ w} in
accordance with Corollary 12 (i).

I Lemma 16 (?). Let G = (G1, . . . , Gk) be a sunflower graph with a simultaneous enu-
meration ζ. A linear order τ that extends the partial order on V (G) induced by ζ is a fine
enumeration for some graph H that has G1, . . . , Gk as induced subgraphs if and only if τ is
left-closed.

Combining Lemmas 9, 14, 15 and 16 we obtain Theorem 13.

I Theorem 13. Let G be a sunflower proper interval graph with simultaneous enumeration
ζ. Then G has a simultaneous unit interval representation that realizes ζ if and only if G has
no conflict for ζ.

4.2 Recognizing Simultaneous Unit Interval Graphs in Polynomial Time
With Theorems 8 and 13 we can now efficiently recognize simultaneous unit interval graphs.

I Theorem 17. Given a sunflower graph G = (G1, . . . , Gk), we can decide in O(|V | · |E|)
time, whether G is a simultaneous unit interval graph, where (V,E) = G? = G1 ∪ · · · ∪Gk.
If it is, then we also provide a simultaneous unit interval representation in the same time.

Proof Sketch. Here we establish polynomial time recognition, and the stated time is proven
in the full version. As discussed earlier, we can assume that G? is connected. With Theorem 6
we obtain a simultaneous enumeration ζ of G, unless G is not a simultaneous proper interval
graph. By Theorem 13, the sunflower graph G is a simultaneous unit interval graph if and
only if there is a simultaneous enumeration η for which G has no conflict. In that case ηr
also has no conflict. With Theorem 8 we have that η or ηr is obtained from ζ by reversals of
reversible parts and independent components. Hence, we only need to consider simultaneous
enumerations obtained that way.

Since every single graph Gi is proper, it has no conflict and we only need to consider
(u, v)-conflicts with u, v ∈ V (S), where S is the shared graph. The minimal (u, v)-chains for
Gi are exactly the shortest paths in Gi and thus independent from reversals. On the other
hand, for the maximal size of (u, v)-bars in Gi only the reversals of the two corresponding
components C,D of u, v are relevant, while components in-between always contribute their
maximum independent set regardless of whether they are reversed. We can thus compute
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for i, j ∈ {1, . . . , k}, u, v ∈ V (S) and each of the four combinations of reversal decisions
(reverse or do not reverse) for the corresponding components C,D of u, v, whether they
yield a conflict at (u, v). We can formulate a corresponding 2-SAT formula F : For every
independent component and every reversible part we introduce a literal that represents
whether it is reversed or not. For every combination of two reversal decisions that yields a
conflict we add a clause that excludes this combination. If F is not satisfiable, then every
simultaneous enumeration yields a conflict. Otherwise, a solution yields a simultaneous
enumeration without conflict. We obtain a simultaneous unit interval representation by
following the construction in Section 4.1. J

5 Conclusion

We studied the problem of simultaneous representations of proper and unit interval graphs.
We have shown that, in the sunflower case, both simultaneous proper interval graphs and
simultaneous unit intervals can be recognized efficiently. While the former can be recognized
by a simple and straightforward recognition algorithm, the latter is based on the three
ingredients: 1) a complete characterization of all simultaneous proper interval representations
of a sunflower simultaneous graph, 2) a characterization of the simultaneous proper interval
representations that can be realized by a simultaneous unit interval representation and 3) an
algorithm for testing whether among the simultaneous proper interval representations there
is one that satisfies this property.

Future Work. While our algorithm for (sunflower) simultaneous proper interval graphs
has optimal linear running time, we leave it as an open problem whether simultaneous unit
interval graphs can also be recognized in linear time.

Our main open question is about the complexity of sunflower simultaneous interval graphs.
Jampani and Lubiw [18] conjecture that they can be recognized in polynomial time for any
number of input graphs. However, even for three graphs the problem is still open.
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