2 research outputs found

    INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    Get PDF
    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system

    Fuzzy set covering as a new paradigm for the induction of fuzzy classification rules

    Get PDF
    In 1965 Lofti A. Zadeh proposed fuzzy sets as a generalization of crisp (or classic) sets to address the incapability of crisp sets to model uncertainty and vagueness inherent in the real world. Initially, fuzzy sets did not receive a very warm welcome as many academics stood skeptical towards a theory of imprecise'' mathematics. In the middle to late 1980's the success of fuzzy controllers brought fuzzy sets into the limelight, and many applications using fuzzy sets started appearing. In the early 1970's the first machine learning algorithms started appearing. The AQ family of algorithms pioneered by Ryszard S. Michalski is a good example of the family of set covering algorithms. This class of learning algorithm induces concept descriptions by a greedy construction of rules that describe (or cover) positive training examples but not negative training examples. The learning process is iterative, and in each iteration one rule is induced and the positive examples covered by the rule removed from the set of positive training examples. Because positive instances are separated from negative instances, the term separate-and-conquer has been used to contrast the learning strategy against decision tree induction that use a divide-and-conquer learning strategy. This dissertation proposes fuzzy set covering as a powerful rule induction strategy. We survey existing fuzzy learning algorithms, and conclude that very few fuzzy learning algorithms follow a greedy rule construction strategy and no publications to date made the link between fuzzy sets and set covering explicit. We first develop the theoretical aspects of fuzzy set covering, and then apply these in proposing the first fuzzy learning algorithm that apply set covering and make explicit use of a partial order for fuzzy classification rule induction. We also investigate several strategies to improve upon the basic algorithm, such as better search heuristics and different rule evaluation metrics. We then continue by proposing a general unifying framework for fuzzy set covering algorithms. We demonstrate the benefits of the framework and propose several further fuzzy set covering algorithms that fit within the framework. We compare fuzzy and crisp rule induction, and provide arguments in favour of fuzzy set covering as a rule induction strategy. We also show that our learning algorithms outperform other fuzzy rule learners on real world data. We further explore the idea of simultaneous concept learning in the fuzzy case, and continue to propose the first fuzzy decision list induction algorithm. Finally, we propose a first strategy for encoding the rule sets generated by our fuzzy set covering algorithms inside an equivalent neural network
    corecore