
INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

David L. lverson
NASA Ames Research Center

Moffett Field, CA

ABSTRACT

Model-based reasoning is a powerful method for performing system monitoring and
diagnosis. Building models for model-based reasoning is often a difficult and time consuming
process. The Inductive Monitoring System (IMS) software was developed to provide a technique
to automatically produce health monitoring knowledge bases for systems that are either difficult to
model (simulate) with a computer or which require computer models that are too complex to use
for real time monitoring. IMS processes nominal data sets collected either directly from the
system or from simulations to build a knowledge base that can be used to detect anomalous
behavior in the system. Machine learning and data mining techniques are used to characterize
typical system behavior by extracting general classes of nominal data from archived data sets. In
particular, a clustering algorithm forms groups of nominal values for sets of related parameters.
This establishes constraints on those parameter values that should hold during nominal
operation. During monitoring, IMS provides a statistically weighted measure of the deviation of
current system behavior from the established normal baseline. If the deviation increases beyond
the expected level, an anomaly is suspected, prompting further investigation by an operator or
automated system.

IMS has shown potential to be an effective, low cost technique to produce system
monitoring capability for a variety of applications. We describe the training and system health
monitoring techniques of IMS. We also present the application of IMS to a data set from the
Space Shuttle Columbia STS-107 flight. IVS was able to detect an ammaly in the lawch
telemetry shortly after a foam impact damaged Columbia's thermal protection system.

INTRODUCTION

Model-based reasoning is a powerful method for performing system monitoring and
diagnosis. Typical model-based reasoning techniques compare a system model or simulation
with system sensor data to detect deviations between values predicted by the model and those
produced by the actual system'. In effect, a model-based reasoner uses the collected system
parameter values as input to a simulation and determines if a particular set of input values is
consistent with the simulation model. When the values are not consistent with the model a
"conflict" occurs, indicating that the system operation is off nominal (when compared to the
presumably correct model)'. One disadvantage of model-based reasoning is that building models
is often a difficuit and time consuming process. For many appiicaiions, ine inductive ivionitoring
System (IMS) provides a method that can monitor system health with nearly the same fidelity as a
model-based reasoner, but without the need to manually build a model.

IMS automatically defines groups of consistent system parameter data by examining and
generalizing from examples of nominal system data. If a system model were available, a set of
parameter values selected from one of these groups produced by IMS would typically compute
without conflicts when processed by the model. With a sufficiently broad training data set, IMS
will produce a knowledge base that contains most or all of the parameter value combinations

Approved for Public Release; Distribution is Unlimited

https://ntrs.nasa.gov/search.jsp?R=20050240965 2019-08-29T21:05:56+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10516158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

necessary to effectively characterize and monitor nominal system operation. After learning how
the system behaves when operating correctly, IMS can identify off nominal behavior and trigger
appropriate alert messages for system operators.

Pressure Valve 1 Pressure Valve 2 Pressure Temperature Temperature
A Position B Position C 1 2

2857.2 86.4% 1218.4 96.2% 1104.1 49.8 37.6

In the following sections, we describe how IMS uses nominal data to characterize normal
system behavior. We then describe how this behavior characterization can be exploited to
determine if system operation is off-nominal. Finally, we present details of the application of IMS
to a Space Shuttle monitoring task.

LEARNING NOMINAL SYSTEM BEHAVIOR

IMS automatically builds monitoring knowledge bases from nominal data sets collected
either directly from the system or from high fidelity simulations. Machine learning and data mining
techniques are used to characterize typical system behavior by extracting general classes of
nominal data from archived data sets. In particular, IMS uses clustering to group sets of
consistent parameter values found in the training data. Clustering is the unsupervised
assignment of elements of a given set to groups or clusters of similar points3. The
implementation of IMS described here draws from two clustering techniques: K-means clustering4
and density-based ~luster ing,~ as we describe below.

DATA VECTORS

The basic data structure of the IMS algorithm is a vector of system parameter values.
(Fig. 1) Each vector is an ordered list of parameters collected from the monitored system by a
data acquisition process. Additionally, the vectors can contain derived parameters computed
from collected data. These vectors define the points in N-dimensional space that will be grouped
by ?he !MS c!us?erin3 a!gorithrn. The va!ues used in a given vec?or may !E cn!!ec?ed
simultaneously by the data acquisition system, or collected over a period of time. The user
specifies the size and content of the vector structure that is most appropriate for the monitoring
application. IMS does not distinguish between raw data values and values derived from the raw
data, which allows a wide range of data preprocessing options. More informative vectors will
typically contain interrelated parameters that tend to vary together as the system operates. Some
time dependent behavior may be captured by including rates of change for one or more
parameters, or by combining several consecutive data samples in a single vector structure.

Figure 1. Sample IMS vector

BUILDING CLUSTERS FROM NOMINAL DATA

tMS processes the training data by formatting input data into the predefined vector format
and building a knowledge base containing clusters of related value ranges for the vector
parameters. (Fig. 2) Each cluster defines a range of allowable values for each parameter in a
given input vector. The vector of high values and the vector of low values in a cluster can be
thought of as corners defining a minimum bounding rectangle in N-space. Since the rectangles
are defined by nominal data, points that fall inside or very near the rectangles are considered to
be within the system’s nominal operating range. The high and low ranges for each element in the
cluster can also be considered as allowable ranges for the corresponding parameter, provided
the other parameters are within their respective ranges specified in that cluster. This view is

similar to model-based reasoning with interval arithmetic where simulations are performed using
a range of possible values for each parameter, rather than a single value6.

-High

Low

Pressure Valve I Pressure Valve 2 Pressure Temperature Temperature
A Position B Position C 1 2

2857.6 86.8% 1219.2 96.3% 1105.0 50.1 38.2

2855.8 86.2% 1215.7 95.5% 1103.2 49.6 37.5

The IMS training process consists of the following steps:

1. IMS starts the training process with an empty cluster database.
2. It reads the nominal training data and formats it into vectors.

It can be useful to scale or normalize the data values before they are inserted in
the vectors. For instance, each parameter can be scaled to represent a
percentage of the maximum expected range for that parameter. This eliminates a
tendency for changes in parameters with larger ranges to overshadow changes in
those parameters with smaller ranges. Conversely, data values can also be
relatively scaled to provide weighting of more significant parameters. For instance,
scaling a parameter to have a larger possible range relative to other parameters in
the vector will amplify deviations in that parameter.

3. The first vector is inserted in the database as the initial cluster.
4. Each subsequent input vector is compared to the contents of the cluster database to

find the cluster that is closest to the vector.
To calculate the distance between a given cluster and a vector, a point contained in
the cluster is selected and the distance between that point and the vector of
interest is computed with a distance formula. Various methods can be used to
select the point in the cluster, depending on desired results. One option, based on
the K-means clustering method4, measures the distance from the centroid of the
cluster found by forming a vector from the average of the high and low values for
each cluster parameter. Various methods can also be used to compute the
distance between a vector and a point in a cluster, e.g., the Euclidean distance
metric.

5. IMS then determines if the input vector is contained in the bounding rectangle defined
by the closest cluster. If so, the database remains unchanged.

6. If the input vector falls outside of the cluster, IMS determines if it is close enough to be
incorporated into the cluster.

As in density-based clustering5, a threshold value, E , specified by the user defines
the maximum allowable distance between a cluster and vector to determine if the

a. If the vector is close enough (distance less than or equal to E), the cluster
parameter intervals are expanded as necessary to include the new vector.

b. If the distance between the training vector and the closest cluster in the
database is greater than E, a new cluster containing €he vector is formed and
inserted into the database.

\E?dw shcu!d be inccrp9rated i!-!?o ?he c!ns?er.

This learning process repeats until all of the training data has been processed and incorporated
into clusters in the knowledge base. Note that the value of E can be adjusted to balance
knowledge base size and monitoring speed versus monitoring tolerance. A larger E value will
tend to produce a smaller knowledge base that allows for real-time monitoring at a higher data

rate. A smaller E value will result in smaller clusters that provide tighter monitoring tolerance, but
will sometimes produce a larger than desired monitoring knowledge base.

After IMS processes the training data, the result is a database of clusters that
characterize system performance in the operating regimes covered by the training data. In
essence, each cluster defines constraints on the values allowed for each parameter in any
particular monitoring input vector. The parameter values in a vector must meet these constraints
for that vector to be considered nominal data. If there is no cluster in the database that contains
a given input vector or is "near" that input vector, then the system is behaving in an unexpected
manner, indicating a possible system anomaly.

SYSTEM HEALTH MONITORING

Because IMS generalizes training data to characterize nominal system operation, the
resulting cluster knowledge base can be used for system health monitoring. For this task, IMS
simply formats the real time data into vectors and queries the knowledge base to locate the cluster
that is closest to each input vector. Two techniques are available for monitoring: strict cluster
matching without a distance indication, or fuzzy matching using a distance measurement. The strict
IMS monitoring scheme requires that the input data vectors be contained inside at least one of the
knowledge base clusters (all parameter values must be within the ranges specified by the cluster
limits) to be considered nominal. This scheme is fastest since it eliminates the need to perform
distance calculations. The fuzzy scheme, on the other hand, will locate the cluster in the monitoring
knowledge base that is closest to the input vector, and report the distance of that vector from the
cluster. This more informative, but slower, scheme will give the operator an idea of how far the
system behavior is deviating from nominal operation as represented by the training data.

In many cases the training data set does not completely cover the nominal operating
space. In these cases it may be desirable to consider a monitored data vector as nominal when it
falls near an established cluster. Suspicion that there is an anomaly would then grow as the
vectors move further away from the nominal clusters. The distance value at which a data point
becomes suspect will vary between different monitoring applications, and will further depend on the
number of parameters monitored, scaling applied to those parameters, etc. I t k beneficial to
standardize the distance/deviation values reported by the monitoring system to ease interpretation
of the results. One approach for this is to use statistical distance metrics.

1 e-x2/(2a2) P(x) = -
a&

Equation 1. Gaussian Distribution with Mean of zero and Standard Deviation CJ

STATISTICAL DISTANCE METRICS

If the training data set provides adequate coverage of nominal system behavior, it is
reasonable to assume that the set of distances that monitored nominal data points (vectors) fall
from their nearest cluster will fit a common statistical distribution. For example, most nominal points
that are not contained in their nearest cluster will fall very close to the cluster, with fewer nominal
points falling in areas further away from the cluster. This situation can be characterized by the
Normal (Gaussian) statistical distribution presented in equation 1, where P(x) gives the probability
that a nominal data point will fall a distance x from the cluster. This quality makes it convenient to
view the proximity of a point to the nearest cluster as a measure of the probability that the point is a
member of the set of nominal values represented by that cluster. Applying a bell-shaped fuzzy set
membership function similar to those described by Yin7 allows us to quantify and normalize the
probability that a given data point is nominal. This fuzzy membership function is implemented by

using equation 1 to calculate the probability that a point a distance x away from the nearest cluster
represents nominal behavior. Since IMS is monitoring for system failures, it is more intuitive to
report the likelihood that a data point is anomalous than that it is normal. This can be accomplished
by calculating 100 * (P(0) - P (x)) to give a value between 0 and 100 that the data represents an
anomaly. P(0) returns the maximum value for equation 1, signifying that the data point lies within
the cluster, i.e., the distance between the point and the cluster is zero.

The shape of the fuzzy membership function will depend on the value of the standard
deviation, u, selected for equation 1. A larger u will increase the width of the bell curve, decreasing
the reported likelihood that points nearby the cluster are anomalous. An effective method for
determining u for the membership function consists of these three steps:

1. Run additional representative nominal system data (not used in the training process)
through the IMS monitoring routine and collect the raw distance data for those points.

2. Find the standard deviation, uo, for that data set.
Raw distance values less than or equal to 2uo represent about 96% of the points
that should be encountered during nominal system monitoring, so it is reasonable
to assume that raw distance excursions much beyond 2uo from nominal could be
cause for concern.

3. Select an acceptable value as a monitoring caution (yellow) limit, e.g. 20%, and set the
value of u in equation 1 so 100 * (P(0) - P(200)) equals approximately 20.

These values are presented as an example and should be adjusted to match each particular
monitoring application. During system monitoring, raw distance values for each data sample are
processed through equation 1 and reported to the user. Since equation 1 has been tailored to
return values near or below an established caution threshold during normal operation, output below
that threshold can be considered nominal. An increasing level of alert can be raised as values
climb above this threshold.

It may also be useful to track the distribution of raw distances over time to discover trends
that may indicate behavior that differs from the baseline distribution described by the currently
active fuzzy membership function. For example, find the standard deviation of raw IMS distances
collected over a period of time and compare that value to the DO that was previously calculated to
set the monitoring caution level. Significant changes in raw distance standard deviation could
indicate declining system health.

REAL TIME PERFORMANCE

In order to use the IMS generated cluster database for real time or near real time system
monitoring, an efficient cluster indexing and retrieval scheme may be required. Several applicable
schemes have been developed in the area of nearest neighbor searching'. In order to allow
searching the database for the closest cluster, the scheme must include a distance metric and the
ability to return the record that is nearest to the query point, not just those that contain the query

I I ~t: aeai Irl I ai Id I GLI IGva! speed must S!SC be su%cient!y fa.? to keep ~p with ?he exper-tec!
data acquisition rate. An efficient indexing and retrieval scheme can also help to speed up the
initial IMS training process since training requires similar closest cluster queries. IMS applications
to date have successfully monitored 1 KHz data rates without distance calculations and 50 Hz data
rates with distance calculations on computers running with clock speeds under 1 GHz. When run
on a 295 MHz Ultra-SPARC processor, monitoring rates in excess of 5 KHz were obtained on the
Space Shuttle data analysis presented in the next section. This Shuttle analysis included distance
calculations. In the current implementation, IMS monitoring speed will typically decrease as the
size of the monitored vector increases, since additional calculations are required for each extra
parameter. Larger cluster knowledge bases can also decrease average monitoring speed.

TL- ---..-I, -.. -,.tA,.,,

'

IMS APPLICATION EXAMPLE

While some domain knowledge is usually required to define effective IMS vectors, the IMS
methodology is domain independent and can be used in a variety of system monitoring situations.
Some possible application domains include aerospace, transportation, manufacturing, power
generation and transmission, medicine, or process monitoring. Of particular interest to NASA is the
application to Integrated Systems Health Management (ISHM), either on board a vehicle or in a
mission control room. To demonstrate the utility of IMS in a mission control setting, we recently
developed an IMS knowledge base to monitor temperature sensors in the wings of a Space Shuttle
Orbiter, and used that knowledge base to analyze archived telemetry data collected from the ill-
fated STS-107 Columbia Space Shuttle mission. This flight came to a disastrous end when the
Columbia orbiter was destroyed during reentry, claiming the lives of all seven crew members. The
ultimate cause of the accident was determined to be a breach in the Thermal Protection System on
the leading edge of the left wing, caused by a piece of insulating foam that struck the wing
approximately 82 seconds after launch. The first indication of the damage that was noticed by
mission controllers monitoring telemetry data was not seen until Orbiter re-entry, 17 days after
launch. That anomaly was a slight increase in a left main landing gear brake line temperature that
occurred about seven minutes before the destruction of the vehicleg.

IMS STS-107 ANALYSIS

The post mission IMS analysis of the STS-107 Columbia flight concentrated on
telemetered data from temperature sensors in the wings of the orbiter. Analyses of telemetry
data from two Right phases, launch/ascent and on-orbit, were conducted. In both analyses, IMS
detected anomalies much earlier in the data than monitoring systems available in mission control.
This example will focus on the STS-107 launch and ascent analysis.

Figure 3. Left Wing Temperature Sensors used in Columbia Ascent Analysis

IMS knowledge bases for the launch and ascent analysis were generated from training
data collected during 10 previous Columbia flights. Separate knowledge bases were generated
for each wing. Training vectors were formed from four corresponding temperature sensors in
each wing of the Orbiter. (Fig. 3) Since ambient temperatures differed on each flight, the data
vectors were normalized to a reference sensor (Main Gear Outboard Wheel Temperature) by
expressing the other sensor values relative to the value of that sensor in each telemetry time
slice. Thus, the resulting vectors contained three parameters each. The data sets used for
training and analysis covered the time period from launch through ascent to just before Main

Engine cut off. The data was sampled at a 4 Hz rate. The resulting left wing knowledge base
contained 1212 clusters and the right wing knowledge base contained 840 clusters. The
difference in knowledge base size between the two wings may be due to larger fluctuations in the
nominal sensor data collected from the left wing. Since IMS monitors data produced by the same
sensors that generated the training data, distinctive characteristics of the sensors are
automatically captured and accounted for in the monitoring knowledge base.

IMS STS-107 ANALYSIS RESULTS

The results of the IMS analysis of the STS-107 Columbia launch are graphed in Figure 4.
The horizontal axis represents time, beginning at the moment of lift off. The vertical axis
represents the IMS measure of deviation from nominal behavior, that is, the distance of the input

STS-107 Launch
Gaussian Weighted IMS Analysis

with 3 CorresPondina sensors in each wina
45

40

35

10

5

0
15:39:00 15:39:41 15:40:22 15:41:03 1241 :44 15:42:24 15:43:05 15:43:46 1 5 4 4 2 7 15:45:08 1 9 4 9 4 9 15:46:30

lime (GMT)

Figure 4 - Results of IMS analysis of STS-107 Columbia launch

vector from the closest nominal cluster. The distance measure has been scaled with the
Gaussian membership function described above. IMS monitoring resuiis for the iefi Wing a n
represented by the lighter colored line. Right wing results using corresponding sensors are
shown as a darker line for comparison. The vertical line near time 15:40:22 shows the moment of
the foam impact event that breached the Thermal Protection System on the left wing. Notice that
the IMS results for the left and right wings remain fairly low until shortly after the foam impact, at
which point the values for the left wing begin to diverge sharply. The IMS deviation values for the
right wing continue to show results within a reasonable range of nominal, while the left wing
deviation values increase to nearly three times those of the right wing. The standard deviation (0)
value for the membership function was set to return a value near 20 as the IMS distances
approached two standard deviations (20,) of the raw distances found in nominal data, as
described previously. Due to limited training data availability, the raw distances used to
determine 00 were gathered by running data from each nominal flight through separate IMS

knowledge bases generated using the other nominal data sets rather than running additional
nominal data through the full STS-107 monitoring knowledge base. During STS-107 launch
monitoring the right wing values remained well below the caution threshold of 20, while the left
wing values significantly exceeded that threshold soon after the foam impact. Although this
analysis was performed off-line using archived data, the techniques used could be implemented
for real time monitoring. Significant deviations in a group of sensors or asymmetrical results for
identical sensor sets, especially of large magnitude such as shown in this analysis, may provide
.indication of anomalies earlier in a mission than current telemetry monitoring tools.

SUMMARY AND CONCLUSIONS

These early results from the Inductive Monitoring System (IMS) show that it is feasible to
automatically construct a useful system monitoring knowledge base from archived system data
using clustering techniques. These knowledge bases could provide system monitoring capability
comparable to that obtained by model-based reasoning techniques, without requiring the cost and
effort of manually building detailed system models. In addition, the IMS monitoring routine may
be used for remote or onboard, real time or near real time system monitoring. As a mission
control tool, iMS could help augment controller awareness of venicle health and provide early
detection of possible anomalies. As shown by the STS-107 analysis, IMS revealed evidence of
the Thermal Protection System breach within minutes of the foam strike while current mission
control tools did not detect symptoms of the problem until Orbiter re-entry, 17 days later.

FUTURE WORK

In addition to applying IMS to various monitoring applications, future work will address
parameter selection, efficiency, system health metrics, and integration with other ISHM
components. Various analytical techniques, including statistical .variance analysis and Principal
Components Analysis, will be tested for their ability to provide insight into informative parameters
for inclusion in IMS vectors. Modifications will be made to the cluster search algorithm in an
attempt to increase the speed of both the training and monitoring processes. Techniques will be
explored to decrease the size of the cluster knowledge base by combining similar clusters. We
will also investigate alternate system health indicators, in addition to the current distance
measurements, e.g., the tracking of raw distance distributions mentioned previously. Finally, we
plan to explore diagnostic applications of IMS, including extracting diagnostic information from the
IMS cluster matching routines, and integrating IMS with diagnostic reasoning systems.

REFERENCES

1.

2.

3.

4.

Dvorak, D. and Kuipers, B., Model-Based Monitoring of Dynamic Systems,
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), Morgan Kaufman, Los Altos, CA., 1989.

Reiter, R., A Theory of Diagnosis from First Principles, Artificial Intelligence,
32(1):57-96, Elsevier Science, 1987.

Bradley, P.S., Mangasarian, O.L., and Street, W.N., Clustering via Concave
Minimization, Advances in Neural Information Processing Systems 9, Mozer, M.C.,
Jordon, M.I., and Petsche, T. (Eds.), pp 368-374, MIT Press, 1997.

Bradley, P.S. and Fayyad, U. M., Refining initial points for K-means clustering, in
Proceedings of the International Conference on Machine Learning (ICML-98), pp 91 --99,
July 1998.

5. Ester, M., Kreigel, H-P, Sander, J., and Xu, X., A Densify-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the 2"d
ACM SIGKDD, pp 226-231, Portland, OR, 1996.

6. Hamscher, W.C., ACP: Reason maintenance and inference control for constraint
propagation over intervals, Proceedings of the gth National Conference on Artificial
Intelligence, pp 506-51 I, Anaheim, CA, July, 1991.

7. Yin, T-K, A Characteristic-Point-Based Fuzzy Inference System Aimed to Minimize
the Number of Fuzzy Rules, IEEE Trans. Fuzzy Systems, vol. 12, no. 2, pp. 250-273,
April 2004.

8. Kleinberg, J.M., Two Algorithms for Nearest-Neighbor Search in High Dimensions,
Proceedings of the 2gth Annual ACM Symposium on Theory of Computing, pp 599-608,
El Paso, TX, May, 1997.

9. Gehman, H.W., et al., Columbia Accident lnvestigation Board Report, U.S.
Government Printing Office, Washingten, D.C., August 2003.

