945 research outputs found

    Energy Efficient Security Framework for Wireless Local Area Networks

    Get PDF
    Wireless networks are susceptible to network attacks due to their inherentvulnerabilities. The radio signal used in wireless transmission canarbitrarily propagate through walls and windows; thus a wireless networkperimeter is not exactly known. This leads them to be more vulnerable toattacks such as eavesdropping, message interception and modifications comparedto wired-line networks. Security services have been used as countermeasures toprevent such attacks, but they are used at the expense of resources that arescarce especially, where wireless devices have a very limited power budget.Hence, there is a need to provide security services that are energy efficient.In this dissertation, we propose an energy efficient security framework. Theframework aims at providing security services that take into account energyconsumption. We suggest three approaches to reduce the energy consumption ofsecurity protocols: replacement of standard security protocol primitives thatconsume high energy while maintaining the same security level, modification ofstandard security protocols appropriately, and a totally new design ofsecurity protocol where energy efficiency is the main focus. From ourobservation and study, we hypothesize that a higher level of energy savings isachievable if security services are provided in an adjustable manner. Wepropose an example tunable security or TuneSec system, which allows areasonably fine-grained security tuning to provide security services at thewireless link level in an adjustable manner.We apply the framework to several standard security protocols in wirelesslocal area networks and also evaluate their energy consumption performance.The first and second methods show improvements of up to 70% and 57% inenergy consumption compared to plain standard security protocols,respectively. The standard protocols can only offer fixed-level securityservices, and the methods applied do not change the security level. The thirdmethod shows further improvement compared to fixed-level security by reducing(about 6% to 40%) the energy consumed. This amount of energy saving can bevaried depending on the configuration and security requirements

    Privacy-aware Secure Region-based Handover for Small Cell Networks in 5G-enabled Mobile Communication

    Get PDF
    The 5G mobile communication network provides seamless communications between users and service providers and promises to achieve several stringent requirements, such as seamless mobility and massive connectivity. Although 5G can offer numerous benefits, security and privacy issues still need to be addressed. For example, the inclusion of small cell networks (SCN) into 5G brings the network closer to the connected users, providing a better quality of services (QoS), resulting in a significant increase in the number of Handover procedures (HO), which will affect the security, latency and efficiency of the network. It is then crucial to design a scheme that supports seamless handovers through secure authentication to avoid the consequences of SCN. To address this issue, this article proposes a secure region-based handover scheme with user anonymity and an efficient revocation mechanism that supports seamless connectivity for SCNs in 5G. In this context, we introduce three privacy-preserving authentication protocols, i.e., initial authentication protocol, intra-region handover protocol and inter-region handover protocol, for dealing with three communication scenarios. To the best of our knowledge, this is the first paper to consider the privacy and security in both the intra-region and inter-region handover scenarios in 5G communication. Detailed security and performance analysis of our proposed scheme is presented to show that it is resilient against many security threats, is cost-effective in computation and provides an efficient solution for the 5G enabled mobile communication

    Versatile Extensible Security System for Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc Network (MANET) is becoming more and more popular in scientific, government, and general applications, but security system for MANET is still at infant stage. Currently, there are not many security systems that provide extensive security coverage for MANET. Moreover, most of these security systems assume nodes have infinite computation power and energy; an assumption that is not true for many mobiles. Versatile and Extensible System (VESS) is a powerful and versatile general-purpose security suite that comprises of modified versions of existing encryption and authentication schemes. VESS uses a simple and network-efficient but still reliable authentication scheme. The security suite offers four levels of security adjustments base on different encryption strength. Each level is designed to suit different network needs (performance and/or security), and the security suite allows individual end-to-end pair-wise security level adjustments; a big advantage for highly heterogeneous network. This versatility and adjustability let each pair of talking nodes in the network can choose a security level that prioritize either performance or security, or nodes can also choose a level that carefully balance between security strength and network performance. Finally, the security suite, with its existing authentication and encryption systems, is a framework that allows easy future extension and modification

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    PA-Boot: A Formally Verified Authentication Protocol for Multiprocessor Secure Boot

    Full text link
    Hardware supply-chain attacks are raising significant security threats to the boot process of multiprocessor systems. This paper identifies a new, prevalent hardware supply-chain attack surface that can bypass multiprocessor secure boot due to the absence of processor-authentication mechanisms. To defend against such attacks, we present PA-Boot, the first formally verified processor-authentication protocol for secure boot in multiprocessor systems. PA-Boot is proved functionally correct and is guaranteed to detect multiple adversarial behaviors, e.g., processor replacements, man-in-the-middle attacks, and tampering with certificates. The fine-grained formalization of PA-Boot and its fully mechanized security proofs are carried out in the Isabelle/HOL theorem prover with 306 lemmas/theorems and ~7,100 LoC. Experiments on a proof-of-concept implementation indicate that PA-Boot can effectively identify boot-process attacks with a considerably minor overhead and thereby improve the security of multiprocessor systems.Comment: Manuscript submitted to IEEE Trans. Dependable Secure Compu
    • …
    corecore