3,580 research outputs found

    A categorical approach to open and interconnected dynamical systems

    No full text
    In his 1986 Automatica paper Willems introduced the influential behavioural approach to control theory with an investigation of linear time-invariant (LTI) discrete dynamical systems. The behavioural approach places open systems at its centre, modelling by tearing, zooming, and linking. We show that these ideas are naturally expressed in the language of symmetric monoidal categories.Our main result gives an intuitive sound and fully complete string diagram algebra for reasoning about LTI systems. These string diagrams are closely related to the classical notion of signal flow graphs, endowed with semantics as multi-input multi-output transducers that process discrete streams with an infinite past as well as an infinite future. At the categorical level, the algebraic characterisation is that of the prop of corelations.Using this framework, we derive a novel structural characterisation of controllability, and consequently provide a methodology for analysing controllability of networked and interconnected systems. We argue that this has the potential of providing elegant, simple, and efficient solutions to problems arising in the analysis of systems over networks, a vibrant research area at the crossing of control theory and computer science.<br/

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)

    MuxViz: A Tool for Multilayer Analysis and Visualization of Networks

    Full text link
    Multilayer relationships among entities and information about entities must be accompanied by the means to analyze, visualize, and obtain insights from such data. We present open-source software (muxViz) that contains a collection of algorithms for the analysis of multilayer networks, which are an important way to represent a large variety of complex systems throughout science and engineering. We demonstrate the ability of muxViz to analyze and interactively visualize multilayer data using empirical genetic, neuronal, and transportation networks. Our software is available at https://github.com/manlius/muxViz.Comment: 18 pages, 10 figures (text of the accepted manuscript

    Universal Constructions for (Co)Relations: categories, monoidal categories, and props

    Get PDF
    Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory.Comment: 22 pages + 3 page appendix, extended version of arXiv:1703.0824

    A complex network perspective on clinical science

    Full text link
    Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, potentially making it possible to predict treatment change, relapse, and recovery. In this article, we discuss the complex network approach as an alternative to the latent disease model and its implications for classification, therapy, relapse, and recovery.R34 MH086668 - NIMH NIH HHS; R01 AT007257 - NCCIH NIH HHS; R21 MH101567 - NIMH NIH HHS; R34 MH099311 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; K23 MH100259 - NIMH NIH HHS; R01 MH099021 - NIMH NIH HH

    Newton vs. Leibniz: Intransparency vs. Inconsistency

    Full text link
    We investigate the structure common to causal theories that attempt to explain a (part of) the world. Causality implies conservation of identity, itself a far from simple notion. It imposes strong demands on the universalizing power of the theories concerned. These demands are often met by the introduction of a metalevel which encompasses the notions of 'system' and 'lawful behaviour'. In classical mechanics, the division between universal and particular leaves its traces in the separate treatment of cinematics and dynamics. This analysis is applied to the mechanical theories of Newton and Leibniz, with some surprising results
    • …
    corecore