76,163 research outputs found

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    Decision-focussed resource modelling for design decision support

    Get PDF
    Resource management including resource allocation, levelling, configuration and monitoring has been recognised as critical to design decision making. It has received increasing research interests in recent years. Different definitions, models and systems have been developed and published in literature. One common issue with existing research is that the resource modelling has focussed on the information view of resources. A few acknowledged the importance of resource capability to design management, but none has addressed the evaluation analysis of resource fitness to effectively support design decisions. This paper proposes a decision-focused resource model framework that addresses the combination of resource evaluation with resource information from multiple perspectives. A resource management system constructed on the resource model framework can provide functions for design engineers to efficiently search and retrieve the best fit resources (based on the evaluation results) to meet decision requirements. Thus, the system has the potential to provide improved decision making performance compared with existing resource management systems

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Collaborative support for distributed design

    Get PDF
    A number of large integrated projects have been funded by the European Commission within both FP5 and FP6 that have aimed to develop distributed design solutions within the shipbuilding industry. VRShips-ROPAX was funded within FP5 and aimed to develop a platform to support distributed through-life design of a ROPAX (roll-on passenger) ferry. VIRTUE is an FP6 funded project that aims to integrate distributed virtual basins within a platform that allows a holistic Computational Fluid Dynamics (CFD) analysis of a ship to be undertaken. Finally, SAFEDOR is also an FP6 funded project that allows designers to perform distributed Risk-Based Design (RBD) and simulation of different types of vessels. The projects have a number of commonalities: the designers are either organisationally or geographically distributed; a large amount of the design and analysis work requires the use of computers, and the designers are expected to collaborate - sharing design tasks and data. In each case a Virtual Integration Platform (VIP) has been developed, building on and sharing ideas between the projects with the aim of providing collaborative support for distributed design. In each of these projects the University of Strathclyde has been primarily responsible for the development of the associated VIP. This paper describes each project in terms of their differing collaborative support requirements, and discusses the associated VIP in terms of the manner that collaborative support has been provided

    An improved approach for automatic process plan generation of complex borings

    Get PDF
    The authors are grateful for funding provided to this project by the French Ministry of Industry, Dassault Aviation, Dassault Systemes, and F. Vernadat for his review and recommendations.The research concerns automated generation of process plans using knowledge formalization and capitalization. Tools allowing designers to deal with issues and specifications of the machining domain are taken into account. The main objective of the current work is to prevent designers from designing solutions that would be expensive and difficult to machine. Among all available solutions to achieve this goal, two are distinguished: the generative approach and the analogy approach. The generative approach is more adapted to generate the machining plans of parts composed of numerous boring operations in interaction. However, generative systems have two major problems: proposed solutions are often too numerous and are only geometrically but not technologically relevant. In order to overcome these drawbacks, two new concepts of feature and three control algorithms are developed. The paper presents the two new features: the Machining Enabled Geometrical Feature (MEGF) and the Machinable Features (MbF). This development is the result of the separation of the geometrical and the technological data contained in one machining feature. The second objective of the paper is to improve the current Process Ascending Generation (PAG) system with control algorithms in order to limit the combinatorial explosion and disable the generation of unusable or not machinable solutions
    corecore