777 research outputs found

    Exact and heuristic approaches for multi-component optimisation problems

    Get PDF
    Modern real world applications are commonly complex, consisting of multiple subsystems that may interact with or depend on each other. Our case-study about wave energy converters (WEC) for the renewable energy industry shows that in such a multi-component system, optimising each individual component cannot yield global optimality for the entire system, owing to the influence of their interactions or the dependence on one another. Moreover, modelling a multi-component problem is rarely easy due to the complexity of the issues, which leads to a desire for existent models on which to base, and against which to test, calculations. Recently, the travelling thief problem (TTP) has attracted significant attention in the Evolutionary Computation community. It is intended to offer a better model for multicomponent systems, where researchers can push forward their understanding of the optimisation of such systems, especially for understanding of the interconnections between the components. The TTP interconnects with two classic NP-hard problems, namely the travelling salesman problem and the 0-1 knapsack problem, via the transportation cost that non-linearly depends on the accumulated weight of items. This non-linear setting introduces additional complexity. We study this nonlinearity through a simplified version of the TTP - the packing while travelling (PWT) problem, which aims to maximise the total reward for a given travelling tour. Our theoretical and experimental investigations demonstrate that the difficulty of a given problem instance is significantly influenced by adjusting a single parameter, the renting rate, which prompted our method of creating relatively hard instances using simple evolutionary algorithms. Our further investigations into the PWT problem yield a dynamic programming (DP) approach that can solve the problem in pseudo polynomial time and a corresponding approximation scheme. The experimental investigations show that the new approaches outperform the state-of-the-art ones. We furthermore propose three exact algorithms for the TTP, based on the DP of the PWT problem. By employing the exact DP for the underlying PWT problem as a subroutine, we create a novel indicator-based hybrid evolutionary approach for a new bi-criteria formulation of the TTP. This hybrid design takes advantage of the DP approach, along with a number of novel indicators and selection mechanisms to achieve better solutions. The results of computational experiments show that the approach is capable to outperform the state-of-the-art results.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 201

    A comparative study of evolutionary approaches to the bi-objective dynamic Travelling Thief Problem

    Get PDF
    Dynamic evolutionary multi-objective optimization is a thriving research area. Recent contributions span the development of specialized algorithms and the construction of challenging benchmark problems. Here, we continue these research directions through the development and analysis of a new bi-objective problem, the dynamic Travelling Thief Problem (TTP), including three modes of dynamic change: city locations, item profit values, and item availability. The interconnected problem components embedded in the dynamic problem dictate that the effective tracking of good trade-off solutions that satisfy both objectives throughout dynamic events is non-trivial. Consequently, we examine the relative contribution to the non-dominated set from a variety of population seeding strategies, including exact solvers and greedy algorithms for the knapsack and tour components, and random techniques. We introduce this responsive seeding extension within an evolutionary algorithm framework. The efficacy of alternative seeding mechanisms is evaluated across a range of exemplary problem instances using ranking-based and quantitative statistical comparisons, which combines performance measurements taken throughout the optimization. Our detailed experiments show that the different dynamic TTP instances present varying difficulty to the seeding methods tested. We posit the dynamic TTP as a suitable benchmark capable of generating problem instances with different controllable characteristics aligning with many real-world problems

    Predicting Good Configurations for GitHub and Stack Overflow Topic Models

    Full text link
    Software repositories contain large amounts of textual data, ranging from source code comments and issue descriptions to questions, answers, and comments on Stack Overflow. To make sense of this textual data, topic modelling is frequently used as a text-mining tool for the discovery of hidden semantic structures in text bodies. Latent Dirichlet allocation (LDA) is a commonly used topic model that aims to explain the structure of a corpus by grouping texts. LDA requires multiple parameters to work well, and there are only rough and sometimes conflicting guidelines available on how these parameters should be set. In this paper, we contribute (i) a broad study of parameters to arrive at good local optima for GitHub and Stack Overflow text corpora, (ii) an a-posteriori characterisation of text corpora related to eight programming languages, and (iii) an analysis of corpus feature importance via per-corpus LDA configuration. We find that (1) popular rules of thumb for topic modelling parameter configuration are not applicable to the corpora used in our experiments, (2) corpora sampled from GitHub and Stack Overflow have different characteristics and require different configurations to achieve good model fit, and (3) we can predict good configurations for unseen corpora reliably. These findings support researchers and practitioners in efficiently determining suitable configurations for topic modelling when analysing textual data contained in software repositories.Comment: to appear as full paper at MSR 2019, the 16th International Conference on Mining Software Repositorie

    Solving Travelling Thief Problems using Coordination Based Methods

    Full text link
    A travelling thief problem (TTP) is a proxy to real-life problems such as postal collection. TTP comprises an entanglement of a travelling salesman problem (TSP) and a knapsack problem (KP) since items of KP are scattered over cities of TSP, and a thief has to visit cities to collect items. In TTP, city selection and item selection decisions need close coordination since the thief's travelling speed depends on the knapsack's weight and the order of visiting cities affects the order of item collection. Existing TTP solvers deal with city selection and item selection separately, keeping decisions for one type unchanged while dealing with the other type. This separation essentially means very poor coordination between two types of decision. In this paper, we first show that a simple local search based coordination approach does not work in TTP. Then, to address the aforementioned problems, we propose a human designed coordination heuristic that makes changes to collection plans during exploration of cyclic tours. We further propose another human designed coordination heuristic that explicitly exploits the cyclic tours in item selections during collection plan exploration. Lastly, we propose a machine learning based coordination heuristic that captures characteristics of the two human designed coordination heuristics. Our proposed coordination based approaches help our TTP solver significantly outperform existing state-of-the-art TTP solvers on a set of benchmark problems. Our solver is named Cooperation Coordination (CoCo) and its source code is available from https://github.com/majid75/CoCoComment: expanded and revised version of arXiv:1911.0312

    Propagators and Solvers for the Algebra of Modular Systems

    Full text link
    To appear in the proceedings of LPAR 21. Solving complex problems can involve non-trivial combinations of distinct knowledge bases and problem solvers. The Algebra of Modular Systems is a knowledge representation framework that provides a method for formally specifying such systems in purely semantic terms. Formally, an expression of the algebra defines a class of structures. Many expressive formalism used in practice solve the model expansion task, where a structure is given on the input and an expansion of this structure in the defined class of structures is searched (this practice overcomes the common undecidability problem for expressive logics). In this paper, we construct a solver for the model expansion task for a complex modular systems from an expression in the algebra and black-box propagators or solvers for the primitive modules. To this end, we define a general notion of propagators equipped with an explanation mechanism, an extension of the alge- bra to propagators, and a lazy conflict-driven learning algorithm. The result is a framework for seamlessly combining solving technology from different domains to produce a solver for a combined system.Comment: To appear in the proceedings of LPAR 2
    • …
    corecore