4 research outputs found

    A Capacity Broker Architecture and Framework for Multi-tenant support in LTE-A Networks

    Get PDF
    Resource allocation in multi-operator scenarios requires an estimate of the tenants' traffic needs. This is necessary in the scenario where a Mobile Network Operator (MNO) owns the Radio Access Network (RAN) and many Mobile Virtual Network Operators (MVNOs) act as resellers of their host network's capacity under their own brands, to their own customers. In such scenarios, the forecasted MVNO traffic is the basis for providing resources suitable with the corresponding MVNOs demand. To that end, the dynamic provision of resources among MVNOs should be performed in flexible, short-term time scales. In this paper, we effectively address this issue by integrating the capacity broker into the 3rd Generation Partnership Project (3GPP) network management architecture using the minimum set of enhancements. In addition, to fully exploit its capabilities, we propose the Multi-tenant Slicing (MuSli) of capacity algorithm, to allocate resources towards MVNOs in coarse time scales. MuSli considers the estimated capacity and the impact of the traffic type (i.e., guaranteed QoS and Best-Effort) in each MVNO, to provide better utilization of the host network's capacity. Our results highlight the gains in the number of served requests without compromising their service quality

    Capacity Self-Planning in Small Cell Multi-Tenant 5G Networks

    Get PDF
    Multi-tenancy allows diverse agents sharing the infrastructure in the 5 th generation of mobile networks. Such a feature calls for more automated and faster planning procedures in order to adapt the network capacity to the varying traffic demand. To achieve these goals, Small Cells offer network providers more flexible, scalable, and cost-effective solutions compared to macrocell deployments. This paper proposes a novel framework for cell planning in multi-tenant Small Cell networks. In this framework, the tenant's contracted capacity is translated to a set of detailed planning specifications over time and space domains in order to efficiently update the network infrastructure and configuration. Based on this, an algorithm is proposed that considers different actions such as adding/removing channels and adding or relocating small cells. The proposed approach is evaluated considering the deployment of a new tenant, where different sets of planning specifications are tested

    Dynamic traffic forecasting and fuzzy-based optimized admission control in federated 5G-open RAN networks

    Get PDF
    Providing connectivity to high-density traffic demand is one of the key promises of future wireless networks. The open radio access network (O-RAN) is one of the critical drivers ensuring such connectivity in heterogeneous networks. Despite intense interest from researchers in this domain, key challenges remain to ensure efficient network resource allocation and utilization. This paper proposes a dynamic traffic forecasting scheme to predict future traffic demand in federated O-RAN. Utilizing information on user demand and network capacity, we propose a fully reconfigurable admission control framework via fuzzy-logic optimization. We also perform detailed analysis on several parameters (user satisfaction level, utilization gain, and fairness) over benchmarks from various papers. The results show that the proposed forecasting and fuzzy-logic-based admission control framework significantly enhances fairness and provides guaranteed quality of experience without sacrificing resource utilization. Moreover, we have proven that the proposed framework can accommodate a large number of devices connected simultaneously in the federated O-RAN

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operaci贸n y la gesti贸n de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desaf铆os cr铆ticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilizaci贸n de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes m贸viles (MNO). Esto requiere t茅cnicas avanzadas de gesti贸n de redes que deben desarrollarse en funci贸n de las caracter铆sticas especiales de estas redes y las demandas de tr谩fico. Por lo tanto, es necesario proporcionar soluciones que permitan la creaci贸n de particiones de red aisladas l贸gicamente sobre la infraestructura de red f铆sica compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualizaci贸n de la RAN destinadas a abordar estos desaf铆os. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red f铆sica, en un escenario LTE-A de m煤ltiples niveles que es propiedad de un solo MNO. Proponemos una soluci贸n de virtualizaci贸n a nivel de estaci贸n base (BS), donde los m贸dulos de banda base de BSs distribuidas, interconectadas a trav茅s de la interfaz l贸gica X2, cooperan para reasignar los recursos radio en funci贸n de las necesidades de tr谩fico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparaci贸n con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales m贸viles (MVNO), al integrar el capacity broker en la arquitectura de administraci贸n de red 3GPP con un conjunto m铆inimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en ingl茅s on-demand) a varios MVNOs. Adem谩s, para aprovechar al m谩ximo las capacidades del capacity broker, proponemos un algoritmo para la asignaci贸n de recursos bajo demanda, considerando dos tipos de tr谩fico con distintas caracter铆sticas. Nuestra propuesta alcanza 50% m谩s de solicitudes admitidas sin violaci贸n del Acuerdo de Nivel de Servicio (SLA) en comparaci贸n con otros esquemas. En la tercera parte de la tesis, estudiamos una soluci贸n para el slicing de red independiente del tipo de BS, considerando la virtualizaci贸n de BS en un escenario de m煤ltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tr谩fico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra soluci贸n logra una ganancia promedio de uso de espectro de 67% y una reducci贸n de la carga de procesamiento de la banda base de 16.6% en comparaci贸n con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desaf铆os y retos de investigaci贸n para trabajos futuros.Postprint (published version
    corecore