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Abstract—Resource provisioning in multi-operator scenarios
requires an estimate of the tenants’ traffic needs. This is necessary
in the scenario where a Mobile Network Operator (MNO) owns
the Radio Access Network (RAN) and many Mobile Virtual Net-
work Operators (MVNOs) act as resellers of their host network’s
capacity under their own brands, to their own customers. In
such scenarios, the forecasted MVNO traffic is the basis for
providing resources suitable with the corresponding MVNOs
demand. To that end, the dynamic provision of resources among
MVNOs should be performed in flexible, short-term time scales.
In this paper, we effectively address this issue by integrating
the capacity broker into the 3rd Generation Partnership Project
(3GPP) network management network architecture using the
minimum set of enhancements. In addition, to fully exploit
its capabilities, we propose the Multi-tenant Slicing (MuSli) of
capacity algorithm, to allocate resources towards MVNOs in
coarse time scales. MuSli considers the estimated capacity and
the impact of the traffic type (i.e., guaranteed QoS and Best-
Effort) in each MVNO, to provide better utilization of the host
network’s capacity. Our results highlight the gains in the number
of served requests without compromising their service quality.

I. INTRODUCTION

Mobile communications are entering a new era with the

popularity of portable electronic devices, which gave rise to

a plethora of new services with ever-increasing resource de-

mands. Lately, Mobile Network Operators’ (MNOs) revenues

cannot keep pace, considering the cost to operate and upgrade

their infrastructure. To date, operational observations show that

there are underutilized resources, e.g., 50% of sites carry traffic

that yields less than 10% of revenue [1]. Network sharing

has been proposed to allocate these underutilized resources

among Mobile Virtual Network Operators (MVNOs), provid-

ing another revenue source for MNOs. Studies have shown

that it can recover up to 20% of operational costs for typical

European MNOs and significantly reduce capital expenditures

in developing countries (e.g., up to 70% in India) [2].

There are still many challenges to overcome, to achieve a

viable network sharing business model appealing to MNOs.

First, network sharing should be performed on demand, with

resources acquired in the scale of minutes, while allocations

are configured via signaling. A centralized resource manage-

ment entity should facilitate this process. Its role is to assist the

MNO owning a shared RAN (i.e., infrastructure provider), to

fully exploit the unused capacity. The notion of this entity,

referred to as capacity broker, has been introduced in the

3rd Generation Partnership Project (3GPP), from a business

perspective [3]. Such a central entity is required to assure

synchronization in resource sharing for such short-time scales,

while satisfying Service Level Agreements (SLAs). Neverthe-

less, its integration into the 3GPP management architecture

[4] is an open issue. In addition, a key question is how to

exploit the functionality of capacity broker to accomplish an

efficient resource allocation, by considering: (i) the global

view of network resource utilization, and (ii) the knowledge

of the expected traffic volumes, a challenging task due to lack

of periodicity in short-term scale. Although many interesting

studies on capacity slicing have been carried out, either they

study the problem from different layer (e.g., [6]-[8]), or they

introduce non-backwards compatible centralized entities with

the existing 3GPP architecture (e.g., [9]).

To that end, the contributions of this paper concentrate

on facilitating resource provisioning between MVNOs, by

integrating the capacity broker in the 3GPP network man-

agement architecture with a minimum set of enhancements.

Furthermore, to fully exploit its range of capabilities, we pro-

pose the Multi-tenant Slicing (MuSli) of capacity framework

for on-demand resource allocation considering two types of

traffic: (i) Guaranteed Quality of Service (QoS) with resources

locked for explicit use by a MVNO and (ii) Best-Effort (BE)

where resources are pooled and shared by all participants.

To accomplish this, we follow a two-step approach: (i) we

improve short-term forecasting techniques by extracting traffic

variation trends and facilitate the capacity broker with accurate

information regarding the expected traffic and (ii) we propose

how to slice the available resources into these two types of

traffic classes, depending on the forecasting and its respective

accuracy.

The remainder of the paper is structured as follows. The re-

lated work is presented in Section II. In Section III we explain

how the capacity broker is integrated in the 3GPP management

architecture. Section IV introduces the system model along

with the MuSli framework. Section V analyzes the simulation

set-up and the evaluation results. Finally, Section VI concludes

the paper.

II. STATE OF THE ART

The initial adoption of network sharing in 3GPP, concen-

trated on passive solutions, wherein MNOs share base station
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sites, antennas, etc. Active sharing that followed, enabled

operators to share network resources for long term periods

according to contractual agreements. For active network shar-

ing, 3GPP has specified two architectures in [5]: (i) the Multi-

Operator Core Network (MOCN) and (ii) the Gateway Core

Network (GWCN). In the former, each operator is sharing

eNBs connected to core network elements belonging to each

MNO using a separate S1 interface. In the latter, operators

share additionally the Mobility Management Entity (MME).

Our proposal is compatible with both 3GPP network sharing

architectures, while introducing on-demand resource allocation

via the means of signaling extensions of 3GPP network sharing

management [4].

A preliminary approach for virtualizing an eNB is in-

troduced in [6], by detailing the notion of hypervisor, that

performs resource sharing among MNOs considering radio

conditions, contracts and traffic load. In advancing the basic

eNB virtualization, [7] introduces the Network Virtualization

Substrate (NVS) that operates closely to the MAC scheduler. A

tailored mixture of reserved and shared resources with respect

to NVS component is proposed in [8], in order to flexibly

allocate shared resources modifying the MAC scheduler. In

this work, we adopt such NVS two-step process, but instead of

concentrating on the MAC scheduler for performing resource

differentiation, we leverage the capacity broker to provide

different resource slices based on the expected traffic volume.

A study adopting the capacity broker paradigm in LTE is

detailed in [9], regarding a range of capacity and spectrum

sharing options. Unlike such an approach that introduces a

new control plane interface to coordinate sharing agreements,

our proposal is backwards compatible with the existing 3GPP

network management architecture, reusing current interfaces,

while introducing a minimum set of enhancements.

The accuracy of short-term load forecasts can significantly

affect the capacity broker decisions for resource slicing. A

wide range of solutions for short-term load forecasting have

been reported in the literature [10], which can be distin-

guished in two categories. The first one employs characteristics

of traffic loads, such as spatial/temporal relevance or self-

similarity [11]. The second category employs techniques, such

as exponential smoothing to study the intrinsic dimensionality

[12], Kalman filtering to capture the evolution of traffic [13]

or modern signal processing techniques such as compressive

sensing [14]. In this paper, we investigate which of the above

methods fits best the capacity broker paradigm and we provide

a set of enhancements, to compensate the lack of periodicity

and non-uniformities of a short-term prediction.

III. 3GPP NETWORK SHARING MANAGEMENT

ARCHITECTURE

The overview of the 3GPP network sharing management

architecture [4], in which we integrate the capacity broker and

execute MuSli, is depicted in Fig. 1. The Master Operator-

Network Manager (MO-NM) monitors the shared network via

the Master Operator-Shared RAN-Domain Manager (MO-SR-

DM) using Type 2 (i.e., Itf-N) interface. In turn, the latter
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Fig. 1. Capacity Broker in 3GPP Network Sharing Management Architecture.

communicates with a set of shared base stations, via Type 1

(i.e., Itf-B) interface. All radio-related functions (i.e., Radio

Resource Management, connectivity to core network etc.)

take place in the level of the shared base stations. In addi-

tion, MO-NM enables the Sharing Operator-Network Manager

(SO-NM), to monitor and control the allocated resources to

MVNOs via Type 5 interface.

Given the existing architecture, we propose to place the

capacity broker on the MO-NM, to facilitate the allocation

of shareable resources, by automatic means and on an on-

demand basis, to MVNOs. The capacity broker, by decid-

ing which requests will be accepted, assures synchronization

in resource sharing for short-time scales, while satisfying

their SLAs. Thus, when co-locating it at MO-NM, it has

rapid access to network monitoring information (such as

Uplink/Downlink load and performance measurements), as

well as to network planning information (i.e., MO-NM has

collected this from MO-SR-DM). Then, the MO-NM uses

the output of the capacity broker to inform the MO-SR-

DM about which specific requests should be accepted and

the shared base stations implement their respective radio-

related functions. Our proposal requires extensions to Type

1, Type 2 and Type 5 interfaces. Type 1 and Type 2 need

to accommodate the tenant identification (i.e., PLMN-id),

resource allocation (e.g., Resource Blocks (RBs)), start time

and duration of the request. In addition, Type 5, which is

typically established upon an agreement, should include the

list of MNO’s cells involved in the capacity slicing process.

All the above interfaces should support resource measurements

and performance monitoring per MVNO. To that end, we

introduce the PLMN-id within each corresponding packet. For

the portion of pooled resources, monitoring information should

be shared among all tenants’ SO-NM systems.

IV. MULTI-TENANT RESOURCE SLICING FRAMEWORK

This section concentrates on elaborating a resource man-

agement framework, called Multi-tenant Slicing (MuSli), to



be executed in the capacity broker in coarse time-scales.

Its objective is performing resource slicing among incoming

requests considering two different traffic classes: guaranteed

QoS and BE. The difference between the two aforementioned

traffic classes lies in their distinct requirements in terms of

radio resources. Thus, whereas guaranteed QoS traffic (usually

identified with services such as voice) is characterized by a

fixed transmission rate, BE traffic (identified, for instance, with

data services) is defined in terms of average demanded data

rate as well as more relaxed delay constraints.

In this scenario the management of the shared RAN re-

sources, conducted by the capacity broker, has to deal with

two main hurdles: i) the diversity of the traffic requests, and

ii) the varying nature of the radio interface. Our methodology

consists in using a forecasting procedure to predict the traffic

volume in near future for all MVNOs considering the entire

deployment and allocating resources with different quality to

different traffic classes (e.g., for voice and data).

A. System Model

Let us define a scenario composed of a set of MVNOs,

V = {i : i = 0, · · · , V } sharing a single RAN. For the

sake of simplicity, and without loss of generality, we assume

hereafter that MVNO 0 is the owner of the shared RAN. The

capacity broker (described in Section III) decides whether

to accept or reject the incoming MVNOs’ requests. Thus,

it manages the shared RAN capacity to serve the capacity

requests generated by the MVNOs in V . In this context, the

appropriate management of the available capacity is a twofold

problem. First, the future capacity usage must be forecasted,

and secondly the available expected capacity must be allocated

to the set of received requests. According to the described

traffic classes, the rth request of the ith MVNO can be

defined as gi,r{ti,r, Ti,r, wi,r} for guaranteed QoS requests or

as bi,r{ti,r, Ti,r, pi,r, λi,r} for BE requests, where ti,r is the

request arrival time, Ti,r is its duration, wi,r (in bps) is the

requested transmission rate in guaranteed QoS traffic, pi,r is

the average size of the packets (in bits/packet) and λi,r is the

average number of generated packets per second (both for BE

traffic). It holds that each MVNO i generates a set of requests

Ri = {r : r = 1, · · · , R}. With regard to the shared RAN, we

consider a cellular deployment, consisting of a set of sectors

S = {s : s = 1, · · · , S}. We denote by xi,s(t), the traffic

volume of MVNO i in sector s at time t (expressed in RBs).

Upon the arrival of a request r ∈ Ri from MVNO i ∈ V ,

the capacity broker must decide if the future availability of

resources will suffice to serve the request r based on traffic

forecasting. We define the column vector of the previous

Tp+1 samples of xi,s(t) as xt
i,s = (xi,s(t − Tp), xi,s(t −

(Tp + 1)), . . . , xi,s(t)), where t is expressed in minutes.

Likewise, the vector of forecasted traffic volumes for the

period [t+1, t+Tf ] is defined as x̂t
i,s = (x̂i,s(t+1), x̂i,s(t+

2), . . . , x̂i,s(t + Tf )). Therefore, the forecasting function, f ,

can be defined as:

f : R
Tp+1 −→ R

Tf

xt
i,s −→ x̂t

i,s
(1)

There is a wide range of forecasting functions that could be

used. In Section IV-C we propose some improvements to be

applied to the forecasting function, and in Section V-B results

obtained with different forecasting methods are evaluated.

Let us note, that the actual traffic volume can be seen as

the forecasted traffic volume plus an error, i.e., xi,s(t) =
x̂i,s(t) + εi,s(t), with εi,s(t) ∈ R. Thus, in order to cope

with the inaccuracy of the forecasted traffic, we define the

Confidence Degree (CD) of the traffic volume of sector s,

γβ
s (t), as the value that will not be exceeded by the actual

traffic volume with probability β. Thus, it holds that

P [x̂s(t) + εs(t) ≤ γβ
s (t)] = β, (2)

where x̂s(t) =
∑

i∈V x̂i,s(t) and εs(t) =
∑

i∈V εi,s(t).

B. MuSli: Algorithm for Multi-tenant Slicing of Capacity

In our proposal, the capacity broker allocates to incoming

guaranteed QoS requests, the RBs that are expected to be

available based on the forecast traffic volume. Conversely, RBs

with higher probability of being used, must be allocated to

incoming BE requests. Note that the capacity broker defines

the available capacity at time t in sector s and for a given

β, as Cβ
s (t) = C − γβ

s (t), where C is the total capacity of

each sector (i.e., both Cβ
s (t) and C expressed as the number

of RBs). Due to differences in the requirements of the two

traffic classes, MuSli prioritizes guaranteed QoS requests over

BE requests.

1) Guaranteed Requests: Let us consider a request

gi,r{ti,r, Ti,r, wi,r} generated by MVNO i to serve a specific

user. This user moves around the scenario with a trajectory

described by Mi,r = {(s1, τ1), · · · , (sM , τM )}, where the

tuple (sm, τm) refers to the mth sector visited by the user

(sm ∈ S) and the time at which the user enters sector m (i.e.,

τm ∈ [ti,r, ti,r + Ti,r]). For this specific case, the capacity

broker should only accept the request if the transmission rate

(i.e., wi,r bps), can be guaranteed along Ti,r. In other words,

it would be accepted if

min
t∈[τm,τm+1)

{
Cβ

sm(t)
} ≥ wi,r

wsm

, ∀(sm, τm) ∈ Mi,r, (3)

where wsm is the average transmission rate per RB, within sec-

tor sm. Yet, as trajectories are unknown by the capacity broker,

the acceptance/rejection decision is performed stochastically.

We assume, that at time t0 a set of new guaranteed traffic

requests, namely G(t0), reaches the capacity broker. According

to the data collected until t0, the probability that the new traffic

will be served by sector s can be calculated as:

αs =
ws

∑
i∈V ||xt0

i,s||1∑
s′∈S ws′

∑
i∈V ||xt0

i,s′ ||1
, (4)

where || · ||1 stands for the 1-norm operand. Initially, the set of

accepted requests is empty and denoted by G′(t0) = ∅. Thus, a

request gi,r{t0, Ti,r, wi,r} ∈ G(t0) is accepted if Fg(gi,r) ≥ 0
for ∀t ∈ [t0, Ti,r], where Fg(gi,r) yields the available RBs

given that gi,r is accepted. Hence, it is expressed as:



Fg(gi,r) =
∑
s∈S

αs

⎡
⎣Cβ

s (t)−
⎛
⎝ ∑

gj,k∈G′(t)

wj,k

ws

⎞
⎠− wi,r

ws

⎤
⎦ . (5)

We calculate (5) for all sectors of the deployment (each

one weighted by αs), by subtracting the resources that are

needed to serve the already accepted requests and the resources

required for the incoming gi,r, from the available capacity of

sector s in time t. If accepted, gi,r is removed from G(t0)
and it is included in G′(t0). This procedure is repeated for all

requests in G(t0).
2) Best Effort Requests: BE requests are served after

accommodating the guaranteed ones. However, since these

requests do not have the strict data rate constraint imposed

by the latter, the capacity broker can allocate them resources

more flexibly. Let us consider that at time t0, a set of new BE

traffic requests (i.e., B(t0)), reaches the capacity broker.

For a given request bi,r{t0, Ti,r, pi,r, λi,r} ∈ B(t0), the

average amount of bits generated along its duration (i.e.,

Ti,r), may be expressed as Ti,rpi,rλi,r bits. Following the

same rationale stated in Section IV-B1, the average number

of RBs required to serve this request in sector s, is equal to
Ti,rpi,rλi,r

wsTsf
, where Tsf is the sub-frame time of LTE-A (i.e.,

0.5 msec). However, the service disruption tolerance of BE

traffic allows the capacity broker to allocate resources more

elastically. Therefore, if we define the set of accepted new BE

requests at time t0 as B′(t0), which is initially empty (i.e.,

B′(t0) = ∅), a request bi,r{t0, Ti,r, pi,r, λi,r} will only be

accepted if Fb(bi,r) ≥ 0. Fb(bi,r) expresses the available RBs

given that bi,r is accepted and it is expressed as

Fb(bi,r) =
∑
s∈S

αs

⎡
⎣
∫ t0+Ti,r

t0

⎛
⎝Cβ

s (t)−
∑

gj,k∈G′(t)

wj,k

ws

⎞
⎠ dt−

−
⎛
⎝ ∑

bj,k∈B′(t)

λj,kpj,kTj,k

wsTsf

⎞
⎠− λi,rpi,rTi,r

wsTsf

⎤
⎦ . (6)

We compute (6), by subtracting the required resources to

serve the already accepted BE requests and the resources to

serve bi,r, from the available capacity in sector s, along the

duration of the request (i.e., Ti,r). As guaranteed requests

precede, the available sector capacity for BE requests is

calculated by deducing the resources needed to serve the

accepted guaranteed ones. If request bi,r is accepted, then it

is removed from B(t0) and it is included in B′(t0).

C. Capacity Forecasting

The flexibility of the network sharing management archi-

tecture (i.e., detailed in Section III), required to provide short-

time scale dynamic provision of resources, poses challenges

into traffic forecasting. There are several factors that affect

the variation of the traffic along time, such as the mobility

of the users, the deployment of the eNBs, etc. In our work,

non-uniformities in the prior traffic load are due to gravity

points of the mobility model. Given that the time horizon of

the forecasting (which is taken into account by the capacity

broker to make admission decisions) depends on Ti,r of each

request, we propose the prior decoupling of the variation trends

that exist in xt
i,s.

In order to conduct the decoupling, the forecasting function,

first defined in (1), performs the Fast Fourier Transform (FFT)

of the traffic vector for each sector, i.e. Xi,s = F{xt
i,s} =

{Xi,s(k) : k = 0, . . . , Tp}, where F{·} stands for the

FFT transform. After applying the FFT, the capacity broker

identifies the set of peaks of Xi,s and then splits it up into a

set of components. Hence, for the jth peak of Xi,s, located

at k = kj , we define Xj
i,s = {Xj

i,s(k) : k = 0, . . . , Tp}
where Xj

i,s(k) = {Xi,s(k) · Λj(k) : k = 0, . . . , Tp}, with

Λj(k) = 1 for kj,min < k < kj,max and Λj(k) = 0
otherwise. If a minimum threshold Xmin is set, the limits

kj,min and kj,max are defined as kj,min = (kj−1 + kj)/2
and kj,max = (kj + kj+1)/2. Finally, the decoupled traffic is

generated as xt,j
i,s = F−1{Xj

i,s}, where F−1{·} is the Inverse

Fast Fourier Transform (IFFT).

The important point to note here, is that each xt,j
i,s isolates

a component of the traffic variation, and therefore it can be

the basis for a more accurate forecasting. Thus, for a given

forecasting method fFM : RTp+1 → RTf , the forecasted

vector of sector s assuming that J peaks are identified in Xi,s

may be expressed as: xt
i,s =

∑J
j=1 fFM

(
xt,j
i,s

)
.

In Section V-B, results for different fFM are obtained, i.e.,

ARIMA, compressive sensing-based method, Kalman Filter

and Holt-Winters.

D. Forecasting Error and Confidence Degree

As stated in (2), the forecasting error and the CD are tightly

coupled. Specifically, the error εi,s(t) depends on t, Tp, Tf and

fFM . Therefore, in Section V the error (and consequently the

CD, γβ
s ) is estimated empirically by applying the following

methodology:

• 1000 realizations of εi,s(t) are collected (i.e., in a deploy-

ment with differently loaded cells) for each forecasting

method. Next the 1000 sample measurements are used to

obtain the empirical density function by employing the

Kernel Density Estimation Technique (KDE) [15]. KDE

is a non-parametric method, and thus it is not necessary

to make assumptions on the εi,s(t) distribution.

• For computing the CD, a profile of 1000 experimentally

estimated capacity values (i.e., x̂i,s(t)) is created. This

profile is used as an observation. As previously, the KDE

is used to obtain the empirical density function.

V. PERFORMANCE EVALUATION

A. Scenario and Parameters

We consider an Urban Micro-cell scenario consisting of 19

BSs with 3 sector antennas each one (total S = 57 sectors),

based on the IMT-Advanced evaluation guidelines [16]. Table I

summarizes the detailed system parameters. Users move in

the network following the SLAW model, which is a human

walk mobility model, considering mobiles moving in confined



gravity areas [17]. With regard to the forecasting, we collected

the prior data traffic records from 57 sectors with coverage

2000 m2. Each data record contains: Time, Sector ID and RBs.

For our simulations, we use two traffic models to represent

guaranteed QoS and BE traffic following parameters in [18].

The users generate guaranteed Constant Bit Rate (CBR) VoIP

traffic with transmission rate 64 Kb/s, as well as BE traffic

FTP requests with file size 0.5 Mbyte every 60 seconds. The

inter-arrival rate follows a Poisson distribution.

TABLE I
BASIC SYSTEM PARAMETERS USED IN THE SIMULATION

Parameters Settings/Assumptions
Network layout 19 BSs (S = 57 sectors)
Tenants V = 2 (MNO:i = 0 and MVNOs:i = 1, 2)
Inter-site distance 200 m (ISD)
Bandwidth 20 MHz (100 RBs) 2.5 GHz
Path loss Model 36.7log10(d[m]) + 22.7+26log10(fc[GHz])
Shadow fading Lognormal, μ = 0, std.=4 dB

B. Forecasting Evaluation

For our study, we examine the following short-term capacity

forecasting methods: ARIMA [11], compressive sensing-based

method [14], Kalman filter [13], and Holt-Winters [12]. To

identify the most suitable method for the capacity broker, we

generated data that spanned in a two-hour prior time period

(Tp = 120 minutes) using SLAW mobility model [17] and we

obtained a Tf = 20 minute forecast. According to SLAW,

the generated data capture spatial non-uniformities due to

variations in users’ trajectories. To compare the performance

of the above methods, we consider a set of network instances

with different load conditions. We use Root Mean Square Error

(RMSE) to measure the forecasting accuracy of the studied

methods. RMSE represents the sample standard deviation of

the difference between predicted and observed values. The

results in Table II show that the most accurate forecast (in the

sense of minimizing RMSE) is the Holt-Winters technique.

Applying the decoupling method of Section IV-C (i.e., FFT),

outperforms the case of forecasting the prior traffic vector

without any decomposition. The highest gain is achieved in

methods that leverage the seasonality of the input data (i.e.,

Holt-Winters and Kalman Filter).

TABLE II
RMSE OF THE STUDIED FORECASTING METHODS

HW Kalman Comp.Bas.Sens. Arima

Without FFT 4.18 5.25 7.1 9.9
With FFT 2.46 3.97 5.96 7.43

C. MuSli Results

In this section we study the performance of the capacity

broker, by executing MuSli for varying forecasting CDs (i.e.,

where β = {90%, 95%, 99%}). The capacity slicing is applied

by considering all network cells. In our scenario, MVNOs

generate both guaranteed QoS and BE requests, with a traffic

mix ratio 20% - 80%. We study different parameters for the

time duration of the prediction (i.e., Tf ), while augmenting
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Fig. 2. (a) Rejected Guaranteed Requests and (b) Rejected BE Requests.

the aggregate demand of incoming requests. At the arrival

moment of a request (i.e., t0), MuSli decides which requests

to accept/reject by checking the CD of the prediction. To

evaluate its performance, we compare it with the baseline

scenario, where admission for an incoming request is based

on resource availability at t0. We conducted Monte-Carlo

event-based simulations in MATLAB R© with 1000 iterations

to achieve statistical validity for each forecasting step.

1) Admission of Incoming Requests: We begin the eval-

uation of MuSli by emphasizing the effect of slicing the

overall capacity using various CDs, on the number of ac-

cepted/rejected requests. Fig. 2 depicts the percentages of (a)

rejected guaranteed QoS (i.e., CBR) and (b) BE (i.e., FTP)

requests. In general, when the capacity broker applies MuSli

with different CDs, more requests are accepted compared with

the baseline scheme. Even for the case of MuSli with β = 99%
for 46376 Kb/s aggregate demand (i.e., the most conservative

approach in slicing resources), the capacity broker rejects

10.28% of the incoming guaranteed requests whereas the

baseline scenario 39.34%. In particular, we observe that the

capacity broker that applies MuSli with high β rejects more

requests, since it considers less capacity to allocate. The

vertical dashed lines denote the limit of offered load that can

be accepted without any rejection (i.e., 10912 Kb/s for the

baseline scheme, 35464 Kb/s for MuSli with β = 99%, 40920

Kb/s for MuSli with β = 95% and 46376 Kb/s for MuSli with

β = 90%).
In principle, there is a trade-off between service quality as-

surance and number of served requests. On the safe side, using

high β on the predicted traffic, ensures service quality but

results into accepting fewer requests. Therefore, the capacity

broker can tune the CD of the forecasting, to treat requests,

according to the desired level of certainty in assuring service

quality. For this reason, in Fig. 2, the capacity broker that

applies MuSli with high β rejects more both guaranteed and

BE requests compared with MuSli with lower β. Moreover,

when comparing Fig. 2(a) and Fig. 2(b), BE requests are
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Fig. 3. (a) RB utilization and (b) SLA violation.

rejected with lower probability compared to guaranteed ones.

This is due to their more relaxed delay constraints.

2) Resource Block Utilization: In Fig. 3, we study the

percentage of (a) RB utilization and (b) RBs of dropped

requests, versus their aggregate demand. In our scenario, a

guaranteed request is dropped when it lacks resources at some

point along its duration, whereas a BE request is dropped when

its total transmission time is higher than a threshold time [18].

Given that both these cases result into disregarding the agreed

SLA, let us refer to them as SLA violation.

In Fig. 3(a), we observe that for low incoming demand

(up to 10912 Kb/s), accepting requests based only in current

resource knowledge (i.e., baseline approach) results into the

same utilization as the one achieved by the capacity broker.

As soon as the baseline approach starts rejecting the incoming

demand (i.e., starting at 13640 Kb/s as shown in Fig. 2),

the RB utilization stabilizes around 69.8%. However, traffic

prediction can prove to be very useful for higher demands. The

capacity broker, by applying MuSli improves the utilization

of the network. All RB utilization curves stabilize at a certain

offered load limit, beyond which the capacity broker rejects

requests (as also depicted in Fig. 2). As we expected, applying

MuSli with high β results in restricted utilization compared

to MuSli with lower β. As shown in Fig. 2, when using

high β more requests are rejected and thus the RB utilization

is limited. Since we are considering the whole deployment,

particular overloaded cells (i.e., gravity points of the mobility

model) restrict the available resources that the capacity broker

can allocate in the slicing process.

Fig. 3(b) illustrates the percentage of RBs of dropped

requests due to violation of the SLA. Although MuSli with

high β rejects more requests (see Fig. 2), it is less likely to

have dropped ones (e.g., when the real traffic is higher than

the chosen CD). For instance, for 43648 Kb/s, an operator

can choose Musli with β = 90% to achieve 90% utilization in

the cost of having 11% SLA violation. On the contrary, being

more conservative and choosing MuSli with β = 99%, will

result into 81% utilization without any SLA violation. This

confirms the trade-off between service quality assurance and

number of served requests.

VI. CONCLUSION

In this paper, we integrated the capacity broker in the 3GPP

management architecture with a minimum set of enhance-

ments. In addition, by leveraging traffic non-uniformities in

a shared deployment, we proposed MuSli, a framework to

be implemented by the capacity broker in coarse time scales.

Along with our proposal, we introduced a decoupling process

to extract variation trends in irregular traffic patterns and

improve traffic forecasting. MuSli, by deciding how to slice

the deployment’s capacity among two types of requests (i.e.,

Guaranteed QoS and BE), improves network’s performance

by (i) increasing the accepted requests, and (ii) decreasing

the underutilized resources. Our results can be leveraged by

infrastructure owners, to flexibly allocate capacity to tenants,

considering different types of services and the uncertainty of

expected traffic. In our future work, we are planning to further

study the degree of certainty in resource provisioning, based

on the density of the deployment and the variation of mobility.
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