4 research outputs found

    Adding superimposition to a language semantics

    Get PDF
    Given the denotational semantics of a programming language, we describe a general method to extend the language in a way that it supports a form of emph{superimposition}~---~just in the sense of aspect-oriented programming. In the extended language, the programmer can superimpose additional or alternative functionality (aka advice) onto points along the execution of a program. Adding superimposition to a language semantics comes down to three steps: (i) the semantic functions are elaborated to carry advice; (ii) the semantic equations are turned into `reflective' style so that they can be altered at will; (iii) a construct for binding advice is integrated. We illustrate the approach by representing semantics definitions as interpreters in Haskell

    Semantics-directed implementation of method-call interception

    Get PDF
    We describe a form of method-call interception (MCI) that allows the programmer to superimpose extra functionality onto method calls at run-time. We provide a reference semantics and a reference implementation for corresponding language constructs. The setup applies to class-based, statically typed, compiled languages such as Java. The semantics of MCI is used to direct a language implementation with a number of valuable properties: simplicity of the implementational model and run-time adaptation capabilities and static type safety and separate compilation and reasonable performance. Our implementational development employs sourcecode instrumentation. We start from a naive implementational model, which is subsequently refined to optimise program execution. The implementation is assessed via benchmarks

    Towards a Taxonomy of Aspect-Oriented Programming.

    Get PDF
    As programs continue to increase in size, it has become increasingly difficult to separate concerns into well localized modules, which leads to code tangling- crosscutting code spread throughout several modules. Thus, Aspect-Oriented Programming (AOP) offers a solution to creating modules with little or no crosscutting concerns. AOP presents the notion of aspects, and demonstrates how crosscutting concerns can be taken out of modules and placed into a centralized location. In this paper, a taxonomy of aspect-oriented programming, as well as a basic overview and introduction of AOP, will be presented in order to assist future researchers in getting started on additional research on the topic. To form the taxonomy, over four-hundred research articles were organized into fifteen different primary categories coupled with sub-categories, which shows where some of the past research has been focused. In addition, trends of the research were evaluated and paths for future exploration are suggested
    corecore