
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

Adding Superimposition To a Language Semantics

Ralf Lämmel

REPORT SEN-E0321 DECEMBER 23, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Adding Superimposition To a Language Semantics

ABSTRACT
Given the denotational semantics of a programming language, we describe a general method to
extend the language in a way that it supports a form of superimposition — just in the
sense of aspect-oriented programming. In the extended language, the programmer can
superimpose additional or alternative functionality (aka advice) onto points along the execution
of a program. Adding superimposition to a language semantics comes down to three steps: (i)
the semantic functions are elaborated to carry advice; (ii) the semantic equations are turned into
'reflective' style so that they can be altered at will; (iii) a construct for binding advice is
integrated. We illustrate the approach by representing semantics definitions as interpreters in
Haskell.

1998 ACM Computing Classification System: D.3.1; D.3.3
Keywords and Phrases: Superimposition; Denotational Semantics

Adding Superimposition To a Language Semantics
— Extended Abstract —

Ralf Lämmel1 � 2
1 CWI, Kruislaan 413, NL-1098 SJ Amsterdam

2 Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam

Ralf.Laemmel@cwi.nl

Abstract

Given the denotational semantics of a programming language, we
describe a general method to extend the language in a way that it
supports a form of superimposition — just in the sense of aspect-
oriented programming. In the extended language, the programmer
can superimpose additional or alternative functionality (aka advice)
onto points along the execution of a program. Adding superimpo-
sition to a language semantics comes down to three steps: (i) the
semantic functions are elaborated to carry advice; (ii) the semantic
equations are turned into ‘reflective’ style so that they can be al-
tered at will; (iii) a construct for binding advice is integrated. We
illustrate the approach by representing semantics definitions as in-
terpreters in Haskell.

1 Introduction

One might say that the essence of an aspect-oriented programming
(AOP) language like AspectJ is that it is an amalgamated language
in the following sense. Besides ordinary object-oriented expressive-
ness, one can also write code that superimposes advice onto points
along the execution of object-oriented functionality. An important
class of join points are method calls. One can give a precise defi-
nition of this sort of AOP on the basis of a formal semantics [8].
(There are further models of AOP, e.g., the Hyper/J-like model,
which we will not address in this paper.)

Question: Can the perception of ‘superimposition’ be captured in a
language-parametric manner, that is, without talking about method
calls, or other constructs, without commitment to a specific lan-
guage? There has been work on studying some forms of superim-
position (say, AOP) at a fundamental level [3, 6, 1, 4] on the basis
of specific computational models. However, we seek an approach
that applies immediately to actual programming languages.

In this extended abstract, we describe a general method to add su-
perimposition to the denotational semantics of a language. The
overall approach is described in Sec. 2. An illustrative example
is developed in full detail in Sec. 3. The design space for our form
of superimposition is briefly scanned in Sec. 4. Related work is
discussed in Sec. 5, and the paper is concluded in Sec. 6.

2 The overall approach

Suppose we consider a semantic function of the following type:� ����� �
: Si � Di

Here, Si is a syntactical domain, and Di is the associated domain of
semantic meanings, say denotations. Semantic functions are speci-

fied using case discrimination on Si while the meaning of a syntacti-
cal form is expressed in terms of the meanings of its subterms (aka
compositionality). Let us consider a specific semantic equation.
Without loss of generality, we pick up an equation for a construct
with one subconstruct:

� �
C x

� ���
f
� �
x
� �

Here, C x is the syntactical pattern at hand, and f is an operation that
turns the denotation of x into the denotation of C x. (We use curried
function application.) Adding superimposition is now performed in
three steps:

1. The semantic functions are elaborated to carry advice.

2. Denotations are made ‘reflective’ so that they can be altered.

3. A construct for binding advice is integrated.

The type of the above semantic function is adapted as follows:
� �	��� �

: Si � R Di

Here, R is a domain constructor to add a registry with superimposed
advice to domains of ordinary denotations. There are a few options
for the actual type of the registry. In essence, the registry is a trans-
former for reflective denotations. To obtain a modular semantics,
we assume that R is a monad. Depending on the binding policy
and other language-design decisions, R could be the environment
monad, the state monad, or a combination of both.

The semantic equation from above is adapted as follows:
� �
C x

� �
� �
C x � :-

�	� �
x
� �����

λx ��� return
�
f x ���	�

The occurrences of “
���

” and return point to monadic style. (We
use the common convention that the monad operator, which lifts
values to computations, is denoted by return, whereas the monad
operator, which applies a value consumer to a computation, is
denoted by “

���
”.) The semantic equations can be turned into

monadic style by a systematic transformation. It is avoidable to in-
troduce monadic style if we fix the binding policy for advice, e.g.,
by explicitly passing around an environment for the registry.

The occurrence of the infix operator “ :- ” in the above equation
points to reflective style. Both the operator “ :- ” and this use of
the term ‘reflective style’ are inventions of the present paper. The
operator “ :- ” shapes the reflective denotation as follows. If d is
the original denotation for a term t, and dm is d in monadic style,
then the reflective denotation is of the form t :- dm. This is read
as ‘by default, at t do dm’. There are a few options for the precise
definition of “ :- ”. In essence, the operator does nothing but appli-
cation of denotation transformers as provided by the registry. That

is, given the registry r, the term t, and the denotation d, the opera-
tion t :- d applies r to t and d. So basically, each semantic equation
can be revised via the registry r.

It remains to perform the third step from above, that is, the integra-
tion of a construct for binding advice. This comes down to adding
one equation for

� ���	� �
. There are a few options depending on the

favoured binding policy and other language-design decisions. One
option is to hold superimposed advice in an environment with a
binding scope that is local to a given program fragment. That is:� �

h adapts t
� �
�

λh � � � � t � � h

We call h and h � hooks. The old hook h � is replaced by the new
hook h. We say that h adapts the program fragment t. The de-
notation transformers accomplished by h will transform the deno-
tations determined for t and its subconstructs. (We try not to use
the AOP term ‘advice’ for h because h accomplishes both the ad-
vice code and the definition of join points or pointcuts.) Hooks and
registries are of the same type: a family of denotation transformers
indexed by the syntactical domains. For example, the denotation
transformer for Si is of type Si � R Di � R Di. The first argu-
ment of type Si emphasises that reflective denotation transformers
can look at the program text to make a decision.

Our method works, in principle, for all possible language semantics
(such as imperative languages, different object-oriented languages,
functional languages, etc.). However, language-specific properties
and obligations occur in this process. Those have to be studied to
arrive at a useful notion of language-parametric superimposition.

In the present paper, we will only deal with dynamic semantics. It is
desirable to couple the adaptation of dynamic and static semantics.
In the ideal situation, type safety of programs that involve super-
imposition should hold by construction. We might actually want to
amalgamate static and dynamic semantics to be able to formulate
certain kinds of pointcuts for superimposition that deal with types.

From here on, we will represent semantics definitions in Haskell.
This immediately allows us to run these definitions as interpreters.

3 An example

We will now illustrate how to make the semantics of a very simple
expression language fit for superimposition, and how to make use
of superimposition. The language comprehends expression forms
for integer constants, variables, and binary arithmetic expressions.
Superimposition will be used in a way to catch division by zero.

In Fig. 1, the semantics of the expression language is defined in the
denotational style. We define a type of denotations for each syntac-
tical category, namely Dexpr for Expr, and Dbinop for Binop. The
type Dexpr expresses that the meaning of an expression is a map-
ping from environments to values. The environment maps variable
identifiers (i.e., strings) to values. The type Dbinop expresses that
the meaning of a binary operator is a function that maps two values
to a single value. We define one meaning function for each syntacti-
cal category using case discrimination according to the syntactical
forms. The definition is compositional, that is, the meaning of a
construct is defined in terms of the meanings of its subconstructs
only, but not the subconstructs themselves.

We will now add superimposition to the semantics according to the
three steps listed in Sec. 2. The first step is to elaborate the se-

Expression syntax
data Expr

�
Const Int � Var String � Bin BinOp Expr Expr

data BinOp
�

Div � �	�	�

Denotations
type Dexpr

�
Env � Val

type Dbinop
�

Val � Val � Val

Variable environments
type Env

�
String � Val

Values incl. an error value
type Val

�
Maybe Int

Expression evaluation
expr :: Expr � Dexpr
expr

�
Const int � ρ

�
Just int

expr
�
Var id � ρ

�
ρ id

expr
�
Bin o e1 e2 � ρ

�
binop o

�
expr e1 ρ � � expr e2 ρ �

Interpretation of binary operators
binop :: BinOp � Dbinop
binop Div

�
Just x � � Just y � � Just

�
x ‘div‘ y �

binop �	�	� � �	�	�
binop

�
Nothing

Figure 1. Denotational semantics of a simple expression lan-
guage. Because it is a Haskell program it can be viewed as an
interpreter as well.

Evaluation function
expr :: Monad m � Expr � m Dexpr
expr

�
Const int � �

return
�
λρ � Just int �

expr
�
Var id � �

return
�
λρ � ρ id �

expr
�
Bin o e1 e2 � � do de1 � expr e1

de2 � expr e2
dop � binop o
return

�
λρ � dop

�
de1 ρ � � de2 ρ �	�

Interpretation of binary operators
binop :: Monad m � BinOp � m Dbinop
binop Div

�
return

�
λv1 v2 �

case
�
v1 � v2 � of�

Just x � Just y � � Just
�
x ‘div‘ y �

� Nothing �
binop �	�	� � � �	�

Figure 2. The interpreter in monadic style

mantic functions to carry advice. One way to realise this step is to
perform ‘monad introduction’, that is, to migrate to monadic style.
This step is independent of the fact that we deal with semantics and
superimposition. In principle, any family of recursive function def-
initions can be turned into monadic style. In [7], we define such
a transformation. So the denotation types in the types of the se-
mantic functions have to be wrapped by a monad. In the semantic
equations, all compound denotations are sequentialised, and they
are recomposed by “

���
”. Without loss of generality, we assume a

call-by-value order. The result of this step is shown in Fig. 2. No-
tice the elaborated types of the semantic functions, which involve a
monad m. Also notice the monadic do-sequence for the compound
meaning of a binary expression, and several occurrences of return.
Instantiating the monad m by the identity monad, and β-reducing
away sequentiality, we would obtain the original interpreter.

Expression evaluation; adapted
expr � expr ::

�
Superimposable m Expr Dexpr �
Superimposable m BinOp Dbinop �

� Expr � m Dexpr

expr
�
Const int � �

return
�
λρ � Just int �

expr
�
Var id � �

return
�
λρ � ρ id �

expr
�
Bin o e1 e2 � � do de1 � expr e1

de2 � expr e2
dop � binop o
return

�
λρ � dop

�
de1 ρ � � de2 ρ �	�

expr e
�

e :- expr e

Interpretation of binary operators; adapted
binop � binop :: Superimposable m BinOp Dbinop

� BinOp � m Dbinop

binop Div
�

return
�
λv1 v2 �

case
�
v1 � v2 � of�

Just x � Just y � � Just
�
x ‘div‘ y �

� Nothing �
binop � �	� � �	� �
binop o

�
o :- binop o

Figure 3. The interpreter with reflective denotations

The second step in our procedure for adding superimposition to a
semantics is to turn the semantic equations into reflective style by
invoking the “ :- ” operator prior to case discrimination. For each
semantic function, we define an overlined version that adds the ap-
plication of “ :- ”, e.g., expr complements expr. (Alternatively, we
could adapt all existing equations to invoke “ :- ” as described in
Sec. 2.) In the semantic equations, all references to the original se-
mantic functions are replaced by references to the overlined ones.
The result of this step is shown in Fig. 3. Notice the new definitions
of expr and binop. Also notice the references to expr and binop in
the semantic equations for expr.

Recall that the operator “ :- ” models transformation of reflective
denotations. Since a language normally comprehends several syn-
tactical domains and corresponding denotation types, the operator
“ :- ” needs to be overloaded for all couples of syntactical domains
and associated denotation types. So a registry is actually a tuple
of denotation transformers — one for each denotation type. For
a given denotation type, the operator is meant to look up the cor-
responding denotation transformer from the registry tuple and to
apply it to the term and the denotation at hand. This can be con-
veniently represented in Haskell using a class for overloading. So
we place the operator “ :- ” in a class Superimposable, which sub-
classes the standard class Monad as follows:

class Monad m � Superimposable m s d
where�

:- � :: s � m d � m d

There are three parameters: m is the type constructor of the monad
for the registry, s is a syntactical domain, d is the type of denotations
for s. We will see in a second that the instances of the Superimpos-
able class follow a simple scheme.

The third step in our procedure for adding superimposition to a se-
mantics is to integrate a construct for binding advice. This includes
the obligation to opt for a specific instance of a Superimposable
monad. We will now provide a general realisation of the third step
including its illustration for the simple expression language. As

The registry domain constructor
type R

�
Reader Hook

Types of hooks for superimposition
data Hook

�
Hook

�
Hexpr � Hbinop �

type Hexpr
�

Expr � R Dexpr � R Dexpr
type Hbinop

�
BinOp � R Dbinop � R Dbinop

The identity Hook
idHook

�
Hook

�
λe ce � ce � λo co � co �

Run a reflective denotation
run ::R d � d
run d

�
runReader d idHook

Instances of Superimposable class

instance Superimposable
�
Reader Hook � Expr Dexpr where

t :- d
�

ask
���

λ
�
Hook

�
h � �	� � h t d

instance Superimposable
�
Reader Hook � BinOp Dbinop where

t :- d
�

ask
���

λ
�
Hook

� � h �	� � h t d

Figure 4. Uniform definition of registry

Syntax of the superimposition construct
data Expr

� �	�	� � Adapts Hook Expr

Semantics of the superimposition construct
expr

�
Adapts h e � � local

�
const h � � expr e �

Figure 5. Uniform integration of a superimposition construct

always with our method, the language designer might bypass the
language-parametric approach if a more language-specific form of
superimposition is favoured.

In Fig. 4, we define a specific monad R that models a registry for su-
perimposition in our example. In fact, we choose the environment
monad (aka Reader in Haskell).1 The type Hook is a product with
two components, one for each denotation type. Each such hook
component is a denotation transformer. The received denotation is
the normal denotation, whereas the computed denotation is the re-
vised, ultimate denotation. The types make clear that a denotation
transformer also receives a syntactical entity, which can contribute
to the decision whether to replace or to preserve the normal deno-
tation. In the figure, we also define an identity hook (i.e., idHook),
which models that the normal denotation is preserved regardless of
the ‘join point’ (i.e., the syntactical form at hand). Running a re-
flective denotation is like ‘running’ the Reader monad with idHook
as initial registry; see run. The last few lines in Fig. 4 instantiate
the Superimposable class for our example semantics. That is, “ :- ”
is defined by looking up the denotation transformers from the envi-
ronment and by applying the relevant transformer to the ingredients
of the given reflective denotation.

In Fig. 5, we complete the extension of the sample semantics by
adding a specific case to the semantic function for expressions. This
new equation provides the most simple and uniform kind of a su-
perimposition construct. The meaning of Adapts h e is that the hook
h adapts the denotation for the expression e and all denotations for

1We recall the operations of the Reader monad:
ask :: m r -- read environment
local ::

�
r � r � � m x � m x -- locally adapt environment

noDivByZero
�

Hook
�
λe d � d � noDivByZero � �

where
noDivByZero � :: BinOp � R Dbinop � R Dbinop
noDivByZero � Div d

�
do d � � d

return
�
λv1 v2 � case

�
v1 � v2 � of� � Just 0 � � Nothing

� d � v1 v2
�

Figure 6. A hook for superimposition to catch division-by-zero

subconstructs of e. The use of the local operator makes it as clear as
crystal that the hook h is only used for the interpretation of e. The
use of const makes clear that previous bindings will be replaced by
the new hook. We will investigate alternatives in the next section.

In Fig. 6, we define a hook for catching division-by-zero for any
interpretation of Div. To this end, the second argument of the de-
notation is checked to be “0”, and if this is the case, then the error
value Nothing is returned. Otherwise, the original denotation is re-
tained. So finally, we can demonstrate superimposition in action.
To this end, let us consider the following program together with an
environment for the used variables:

myexp
�

Bin Div
�
Const 42 � � Var "myvar" �

myenv
�

λid � if id � "myvar" then Just 0 else Nothing

Using the original denotational semantics as an interpreter for this
program, we will obviously encounter a division-by-zero run-time
error. Using the aspect-oriented interpreter, we can catch division
by zero. The following program execution returns Nothing:

run
�
expr

�
Adapts noDivByZero myexp �	� myenv

4 Design space exploration

We will now walk through a few locations in the design space for
a language semantics with superimposition. This will further sub-
stantiate the generality of our method, and it will clarify how it can
be customised for a specific language at hand.

Binding policies We will first discuss different binding policies
for advice. The policy that we have seen above employs an en-
vironment to carry advice. Here the affected program fragment is
explicitly part of the binding construct. Also, we favoured the re-
placement of previous bindings by the new binding. Both design
decisions can be altered. We will first discuss cumulative advice
binding as opposed to replacement semantics before. We will then
discuss the use of a state for the registry as opposed to an environ-
ment before.

In Fig. 7, we provide a new definition of the Adapts construct; see
Fig. 5 for the original definition. We chain the previous binding
and the new binding (cf. “ � ”). The new binding gets into control
but if it wanted to resort to the standard denotation, it actually ac-
cesses the denotation as processed by the previous binding. It is
now not too difficult to think of further binding policies. For ex-
ample, we could favour denotation transformers with yet another
denotation argument for the standard denotation prior to any adap-
tation by previous bindings. This way, newly installed hooks could
abandon previously installed hooks.

Syntax of the superimposition construct
data Expr

� �	�	� � Adapts Hook Expr

Semantics of the superimposition construct
expr

�
Adapts

�
Hook

�
he � ho �	� e � � local chain

�
expr e �

where
chain

�
Hook

�
he � � ho � �	� � Hook

�
λe � he e � he � e �
λo � ho o � ho � o �

Figure 7. Superimposition with cumulative advice binding

Registry-aware computations
type R

�
State Hook

Values incl. Void for pure side effects
data Val

� �	�	� � Void

Syntax of the superimposition construct
data Expr

� �	�	� � HookUp Hook

Semantics of the superimposition construct
expr

�
HookUp h � � put h

���
λ
� � � return

�
return Void �

Figure 8. Superimposition with a state for advice binding

In Fig. 8, we use the State monad as opposed to the Reader monad
for the registry; see Fig. 4 for the original definition.2 Here we as-
sume that the language semantics at hand provides a notion of a
purely side-effective computation. Hence, there is a designated re-
sult value Void. The construct for superimposition now also takes a
different form because we do not list the affected program fragment,
but we simply register advice along the execution of the program.
So the construct for binding advice is of the form HookUp h with
the intended semantics that the hook h as installed as registry at the
time when the HookUp expression is executed. As one can see, the
expression evaluates to Void. A problem with this approach is that
the base semantics and the do-sequences for the introduced registry
monad might accidentally disagree on the order of computation. We
will come back to this problem in a minute.

Effect composition So we have seen that both an environment and
a state make sense for carrying advice. Capturing this variation
point in a monad parameter is a good idea because the superim-
position level might even deal with further effects than just car-
ried advice. For example, we might want to maintain dynamic join
point information [13], or we might want to reflect on the success
and failure of denotation transformation. Regardless of the choice
monadic-style semantics vs. hard-wired effects, a discussion of the
relationship between the superimposition level and the base seman-
tics is in place.

By default, we assume that the semantics is made fit for carrying
advice without looking at the denotation types. For example, even
if the original semantics is already in monadic style, we can per-
form monad introduction. This will result in nested monadic style.
In Fig. 9, this is illustrated for a variation on our expression lan-
guage. The variation provides an Assign statement the semantics of
which relies on the State monad for the variables in a program. The
reflective denotation for an Assign expression is a nested monadic
computation. At the top level, the computations for enabling super-

2We recall the operations of the State monad:
get :: m s -- read state
set :: s � m

� � -- write state

Syntax extension for assignments
data Expr

� �	�	� � Assign String Expr

Revision of expression denotations
type Dexpr

�
State Env Val

Semantics of assignments
expr

�
Assign id e � � � do de � � expr e �

return
�
do ρ � get

v � de �
put

�
λid � � if id � id �

then v
else ρ id � �

return v �

Figure 9. The Superimposable monad on top of a base monad

imposition are arranged in a do-sequence. The inner do-sequence
directly models the semantics of assignment. That is, the state is
looked up with get, the right-hand side of the assignment is eval-
uated to v, the state is updated in the point for the variable id, the
updated state is ‘put back’, and the right-hand side value v is re-
turned as the value of the assignment.

These nested do-sequences pinpoint a problem. Suppose, we use a
state for the registry; recall Fig. 8. A subexpression e1 might hook
up another subexpression e2 while e2 would be normally executed
before e1. That is, the nested do-sequences could disagree on the
order of computation. Note that the inner sequence represents the
base semantics whereas the outer sequence was established by sys-
tematic monad introduction. To enforce a common order, we should
transform the monad in the base semantics to integrate the registry
or any other superimposition effect as well. We could even elabo-
rate an existing effect in the base semantics, e.g., an environment
or a state, so that it accomplishes the registry as well. If the base
semantics is not in monadic style, then it is not really prepared for
such an amalgamation of effect spaces. In the view of these prob-
lems, our earlier choice of an environment monad for the registry is
more favourable. The ordering problem is here a non-issue because
advice binding is local with respect to a given term.

Intercepting invocations Our approach allows us to intercept any
point of the program execution in the sense of syntactical frag-
ments. It is at the heart of AOP to intercept invocations of meth-
ods or other procedural abstractions. So we want to briefly examine
how this looks like in our setting. In Fig. 10, we further extend our
expression language to accomplish a form of named function ap-
plication. The semantic equation for function application is already
prepared to carry advice. (We again use nested monadic style.) We
use a helper function apply to apply a function-type value to an
argument. For brevity, we do not define any expression form for
function abstraction (i.e., λ-abstraction), but we assume that the en-
vironment can hold functions, e.g., a function "div". At the bottom
of Fig. 10, we define a hook noDivByZero, which intercepts appli-
cations of the "div" function to catch division by zero. Notice the
plain use of pattern matching for filtering out the relevant (nested)
function application. The constructed denotation returns Error if
the second argument of "div" is “0”, and otherwise it applies the
original binding of "div". This hook looks a bit verbose because it
reconstructs the normal denotation to a large extent. This could be
captured by a reusable operator for ‘function-application intercep-
tion’.

Syntax extension for function applications
data Expr

� �	�	� � Apply Expr Expr

Functions evaluate to functions
data Val

� �	�	� � Fun
�
Val � Val �

Adapted semantics of function application
expr

�
Apply e1 e2 � � do de1 � expr e1

de2 � expr e2
return

�
do v1 � de1

v2 � de2
return

�
apply v1 v2 �

�
Helper for function application

apply :: Val � Val � Val
apply

�
Fun f � val

�
f val

apply
�

Error

Another division-by-zero catcher
noDivByZero :: Expr � R Dexpr � R Dexpr
noDivByZero

�
Apply

�
Apply

�
Var "div" � e1 � e2 � d

�
do de1 � expr e1

de2 � expr e2
return

�
do ρ � get

v1 � de1
v2 � de2
case v2 of

Int 0 � return Error
� return

�
apply

�
apply

�
ρ "div" � v1 � v2 �

�
noDivByZero d

�
d

Figure 10. Intercepting a function application

5 Related work

For distributed systems (of communicating processes), there exists
a notion of superimposition [3, 6, 10] which is (like aspects in AOP)
orthogonal to the usual breakdown of modules. This sort of super-
imposition contributes to the theoretical basis of AOP. Another ab-
stract, formal model of AOP is provided in [4]. It is based on execu-
tion monitors for the events that correspond to the points of interest
along the program execution. Another formal semantics of AOP is
based on CSP with CSP synchronisation sets as join points [1]. All
this work differs from ours in that we start from an ordinary denota-
tional semantics, and make it fit for superimposition in a systematic
manner. That is, we do not resort to any designated formal model,
but we just stay in the denotational setting.

Our approach to reflect on the syntactical patterns along program
interpretation is inspired by the event grammars in [2]. Auguston
suggests to formalise the execution of a program in a language in
terms of an event grammar. Such a behavioural model can then be
used to superimpose functionality on the event traces of a program,
e.g., to check assertions, or to perform debugging. This approach
has been used in the development of several debugging tools. Our
notion of ‘reflective denotations’ is a semantic transposition and a
strong generalisation of a tweaked monadic-style of functional pro-
gramming proposed by Meuter in [9]. In this style, the programmer
informs a non-standard monadic bind combinator about the names
of functions that are applied to intermediate results. These names
can be viewed as (explicit) join points. By contrast, we prepare a

semantics in a way that a ‘superimposable’ monad can revise deno-
tations for syntactical patterns. Our method is based on a systematic
transformation as opposed to an encoding style.

There is an enormous amount of related work on reflection [11, 12,
5]; its relevance for AOP is generally acknowledged. We have not
seen a generic method to systematically elaborate a denotational se-
mantics for AOP-like reflection in the available literature. The re-
flection literature is normally concerned with some kind of staged
interpretation as opposed to the provision of a superimposition con-
struct. However, it seems that our approach could take great advan-
tage of the reflective theory for the purpose of formal reasoning on
aspect-oriented programs. Also, ideas on ‘full computational re-
flection’ are of use to further generalise our approach.

6 Concluding remarks

The described method defines how to extend an ordinary language
semantics so that one obtains an aspect-oriented language seman-
tics. We call this achievement ‘superimposition for free’. Techni-
cally, it is based on a ‘reflective denotation style’. Accidentally, the
approach also suggests a normative style of aspect-oriented func-
tional programming, but this has to be discussed elsewhere. The
aspect-oriented programming terms are instantiated for ‘superim-
position for free’ languages as follows:

Static join point = Syntactical pattern
Dynamic join point = Computation on syntactical pattern
Point cut = Pattern matching predicate
Advice = Denotation transformer
Program execution = Monadic do-sequence
Aspect = Hook for superimposition
Dynamic weaving = Registry update
Static weaving = Partial evaluation

We contend that this is a rather simple, uniform, and general way to
define aspect-oriented language semantics. We are also willing to
say that our approach can be seen as another definition of reflection.

The to-do list for an exhaustive treatment of the subject is long:

� Transpose the method to static semantics.
� Cover the standard forms of dynamic join points.
� Make even the denotation transformers reflective.
� Recover compositionality in some way.
� Cover SOS in addition to denotational semantics.
� ...

Acknowledgement

I am very grateful to the three anonymous FOAL 2003 workshop
referees for their encouraging and constructive remarks. I am also
grateful to the participants of the Belgian-Dutch poster workshop
on AOSD, on 21 January 2003 in Twente, with whom I had stimu-
lating discussions on the subject of the paper.

7 References

[1] J. H. Andrews. Process-algebraic foundations of aspect-
oriented programming. In Proceedings of the Third Interna-
tional Conference on Metalevel Architectures and Separation
of Crosscutting Concerns (Reflection 2001), volume 2192 of
Lecture Notes in Computer Science, pages 187–209, Berlin,
Heidelberg, and New York, Sept. 2001. Springer-Verlag.

[2] M. Auguston. Program behavior model based on event
grammar and its application for debugging automation. In
M. Ducassé, editor, AADEBUG, 2nd International Workshop
on Automated and Algorithmic Debugging, pages 277–291,
Saint Malo, France, 22–24 May 1995. IRISA-CNRS.

[3] L. Bougé and N. Francez. A compositional approach to su-
perimposition. In ACM, editor, Proc. of the 1988 conference
on Principles of programming languages (POPL’88), January
13–15, 1988, San Diego, CA, pages 240–249, New York, NY,
USA, 1988. ACM Press.

[4] R. Douence, O. Motelet, and M. Südholt. A formal definition
of crosscuts. In Proc. of the Third International Conference on
Metalevel Architectures and Separation of Crosscutting Con-
cerns (Reflection 2001), volume 2192 of LNCS, pages 170–
186. Springer-Verlag, Sept. 2001.

[5] S. Jefferson and D. P. Friedman. A simple reflective in-
terpreter. Lisp and Symbolic Computation, 9(2/3):181–202,
May/June 1996.

[6] S. Katz. A superimposition control construct for distributed
systems. ACM Transactions on Programming Languages and
Systems, 15(2):337–356, Apr. 1993.

[7] R. Lämmel. Reuse by Program Transformation. In
G. Michaelson and P. Trinder, editors, Functional Program-
ming Trends 1999. Intellect, 2000. Selected papers from the
1st Scottish Functional Programming Workshop.

[8] R. Lämmel. A Semantical Approach to Method-Call Intercep-
tion. In Proc. of the 1st International Conference on Aspect-
Oriented Software Development (AOSD 2002), pages 41–55,
Twente, The Netherlands, Apr. 2002. ACM Press.

[9] W. D. Meuter. Monads as a theoretical foundation for
AOP. In S. Mitchell and J. Bosch, editors, Workshop Reader,
ECOOP’97, volume 1357 of LNCS. Springer-Verlag, 1998.

[10] M. Sihman and S. Katz. A calculus of superimpositions for
distributed systems. In Proceedings of the 1st international
conference on Aspect-oriented software development, pages
28–40. ACM Press, 2002.

[11] B. C. Smith. Reflection and semantics in lisp. In Conference
Record of the Eleventh Annual ACM Symposium on Principles
of Programming Languages, pages 23–35. ACM, ACM, Jan.
1984.

[12] M. Wand and D. P. Friedman. The mystery of the tower re-
vealed: A non-reflective description of the reflective tower.
In R. P. Gabriel, editor, Proceedings of the ACM Conference
on LISP and Functional Programming, pages 298–307, Cam-
bridge, MA, Aug. 1986. ACM Press.

[13] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for ad-
vice and dynamic join points in aspect-oriented programming.
In G. T. Leavens and R. Cytron, editors, FOAL 2002 Pro-
ceedings: Foundations of Aspect-Oriented Languages Work-
shop at AOSD 2002, number 02-06 in Technical Report 02-06,
Dept. of Comp. Sc., Iowa State Univ., pages 1–8, Apr. 2002.

