22,902 research outputs found

    Single Event Effects in the Pixel readout chip for BTeV

    Get PDF
    In future experiments the readout electronics for pixel detectors is required to be resistant to a very high radiation level. In this paper we report on irradiation tests performed on several preFPIX2 prototype pixel readout chips for the BTeV experiment exposed to a 200 MeV proton beam. The prototype chips have been implemented in commercial 0.25 um CMOS processes following radiation tolerant design rules. The results show that this ASIC design tolerates a large total radiation dose, and that radiation induced Single Event Effects occur at a manageable level.Comment: 15 pages, 6 Postscript figure

    Effects of cosmic rays on single event upsets

    Get PDF
    Assistance was provided to the Brookhaven Single Event Upset (SEU) Test Facility. Computer codes were developed for fragmentation and secondary radiation affecting Very Large Scale Integration (VLSI) in space. A computer controlled CV (HP4192) test was developed for Terman analysis. Also developed were high speed parametric tests which are independent of operator judgment and a charge pumping technique for measurement of D(sub it) (E). The X-ray secondary effects, and parametric degradation as a function of dose rate were simulated. The SPICE simulation of static RAMs with various resistor filters was tested

    Heavy ion induced Single Event Phenomena (SEP) data for semiconductor devices from engineering testing

    Get PDF
    The accumulation of JPL data on Single Event Phenomena (SEP), from 1979 to August 1986, is presented in full report format. It is expected that every two years a supplement report will be issued for the follow-on period. This data for 135 devices expands on the abbreviated test data presented as part of Refs. (1) and (3) by including figures of Single Event Upset (SEU) cross sections as a function of beam Linear Energy Transfer (LET) when available. It also includes some of the data complied in the JPL computer in RADATA and the SPACERAD data bank. This volume encompasses bipolar and MOS (CMOS and MHNOS) device data as two broad categories for both upsets (bit-flips) and latchup. It also includes comments on less well known phenomena, such as transient upsets and permanent damage modes

    Cosmic ray environment model for Earth orbit

    Get PDF
    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed

    Single event phenomena: Testing and prediction

    Get PDF
    Highly integrated microelectronic devices are often used to increase the performance of satellite systems while reducing the system power dissipation, size, and weight. However, these devices are usually more susceptible to radiation than less integrated devices. In particular, the problem of sensitivity to single event upset and latchup is greatly increased as the integration level is increased. Therefore, a method for accurately evaluating the susceptibility of new devices to single event phenomena is critical to qualifying new components for use in space systems. This evaluation includes testing devices for upset or latchup and extrapolating the results of these tests to the orbital environment. Current methods for testing devices for single event effects are reviewed, and methods for upset rate prediction, including a new technique based on Monte Carlo simulation, are presented

    Long term integrity for space station power systems

    Get PDF
    A study was made of the High Temperature Design Codes ASME N47, British R5, and the French RCC-MR Rules. It is concluded that all these codes provide a good basis of design for space application. The new British R5 is the most complete since it deals with the problem of defects. The ASME N47 was subjected longer to practical application and scrutiny. A draft code is introduced, and a proposed draft for high temperature design in which attempts were made to identify gaps and improvements is suggested. The design is limited by creep characteristics. In these circumstances, life is strongly affected by the selected value of the factor of safety. The factor of safety of primary loads adopted in the codes is 1.5. Maybe a lower value of 1.25 is permissible for use in space. Long term creep rupture data for HAYNES 188 is deficient and it is suggested that extrapolation methods be investigated
    corecore