49,577 research outputs found

    Metric space analysis of systems immersed in a magnetic field

    Get PDF
    Understanding the behavior of quantum systems subject to magnetic fields is of fundamental importance and underpins quantum technologies. However, modeling these systems is a complex task, because of many-body interactions and because many-body approaches such as density functional theory get complicated by the presence of a vector potential into the system Hamiltonian. We use the metric space approach to quantum mechanics to study the effects of varying the magnetic vector potential on quantum systems. The application of this technique to model systems in the ground state provides insight into the fundamental mapping at the core of current density functional theory, which relates the many-body wavefunction, particle density and paramagnetic current density. We show that the role of the paramagnetic current density in this relationship becomes crucial when considering states with different magnetic quantum numbers, mm. Additionally, varying the magnetic field uncovers a richer complexity for the "band structure" present in ground state metric spaces, as compared to previous studies varying scalar potentials. The robust nature of the metric space approach is strengthened by demonstrating the gauge invariance of the related metric for the paramagnetic current density. We go beyond ground state properties and apply this approach to excited states. The results suggest that, under specific conditions, a universal behavior may exist for the relationships between the physical quantities defining the system

    A fully 3-dimensional thermal model of a comet nucleus

    Get PDF
    A 3-D numerical model of comet nuclei is presented. An implicit numerical scheme was developed for the thermal evolution of a spherical nucleus composed of a mixture of ice and dust. The model was tested against analytical solutions, simplified numerical solutions, and 1-D thermal evolution codes. The 3-D code was applied to comet 67P/Churyumov-Gerasimenko; surface temperature maps and the internal thermal structure was obtained as function of depth, longitude and hour angle. The effect of the spin axis tilt on the surface temperature distribution was studied in detail. It was found that for small tilt angles, relatively low temperatures may prevail on near-pole areas, despite lateral heat conduction. A high-resolution run for a comet model of 67P/Churyumov-Gerasimenko with low tilt angle, allowing for crystallization of amorphous ice, showed that the amorphous/crystalline ice boundary varies significantly with depth as a function of cometary latitude.Comment: 19 pages, 10 figure

    Procedural embodiment and magic in linear equations

    Get PDF
    How do students think about algebra? Here we consider a theoretical framework which builds from natural human functioning in terms of embodiment – perceiving the world, acting on it and reflecting on the effect of the actions – to shift to the use of symbolism to solve linear equations. In the main, the students involved in this study do not encapsulate algebraic expressions from process to object, they do not solve ‘evaluation equations’ such as by ‘undoing’ the operations on the left, they do not find such equations easier to solve than , and they do not use general principles of ‘do the same thing to both sides.’ Instead they build their own ways of working based on the embodied actions they perform on the symbols, mentally picking them up and moving them around, with the added ‘magic’ of rules such as ‘change sides, change signs.’ We consider the need for a theoretical framework that includes both embodiment and process-object encapsulation of symbolism and the need for communication of theoretical insights to address the practical problems of teachers and students

    Darwin-Riemann problems in general relativity

    Get PDF
    A review is given of recent results about the computation of irrotational Darwin-Riemann configurations in general relativity. Such configurations are expected to represent fairly well the late stages of inspiralling binary neutron stars.Comment: 20 pages, 11 PostScript figures, uses PTPTeX, to appear in the Proceedings of Yukawa International Seminar 99 "Black Holes and Gravitational Waves", edited by T. Nakamura & H. Kodama, Prog. Theor. Phys. Supp

    Transport properties in resonant tunneling heterostructures

    Full text link
    We use an adiabatic approximation in terms of instantaneous resonances to study the steady-state and time-dependent transport properties of interacting electrons in biased resonant tunneling heterostructures. This approach leads, in a natural way, to a transport model of large applicability consisting of reservoirs coupled to regions where the system is described by a nonlinear Schr\"odinger equation. From the mathematical point of view, this work is non-rigorous but may offer some fresh and interesting problems involving semiclassical approximation, adiabatic theory, non-linear Schr\"odinger equations and dynamical systems.Comment: 25 pages including 9 postscript figures; requires REVTeX 3.0, psfig; uuencoded gz-compressed .tar file; preprint 1133 April 96 Ecole Polytechnique to be published in J. Math. Phys. october 199
    • …
    corecore