553 research outputs found

    Remote Sensing of Ocean Winds and Waves with Bistatic HF Radar

    Get PDF
    High frequency, or HF, coastal radars collect a vast amount of data on ocean currents, winds and waves. The technology continuously measures the parameters, by receiving and interpreting electromagnetic waves scattered by the ocean surface. Formulating the methods to interpret the radar data, to obtain accurate measurements, has been the focus of many researchers since the 1970s. Much of the existing research has been in monostatic radar theory, where the transmitter and receiver are stationed together. However, a larger, higher quality dataset can be obtained by utilising bistatic radar theory, whereby the transmitter and receiver are located at separate sites. In this work, the focus is on bistatic radar, where the most commonly used mathematical model for monostatic radar is adapted for bistatic radar. Methods for obtaining current, wind and wave information from the model are then described and in the case of winds and waves, tested. Investigating the derived model shows that it does not always fit the real data well, due to undesirable effects of the radar. These effects can be incorporated into the model but then the existing methods used to obtain ocean information may not be applicable. Therefore, a new method for measuring ocean waves from the model is developed. The recent advances in machine learning have been substantial, with the neural network becoming proficient at finding the link between complexly related datasets. In this work, a neural network is used to model the relationship between the developed radar model and the directional ocean spectrum. It is shown to successfully invert both monostatic and (for the first time) bistatic HF radar data and with this success, it becomes a viable option for obtaining ocean surface parameters from radar data

    HF Radar Network Design for Remote Sensing of the South China Sea

    Get PDF

    Passive Automatic Identification System for Maritime Surveillance

    Get PDF
    This work describes the main achievements in the Passive AIS (P-AIS) project stage. The extensive literature research in the second chapter concludes performing additional in-situ experiments to estimate reliable target RCS and clutter reflectivity values at the AIS frequency range. The typical effective RCS distribution for ferry, yacht and small wooden boat is experimentally drawn; it reaches up to 26dBsm for the ferry. A clutter model is created, taking into account the literature and the experimental study. The AIS signal waveform is analyzed and the potential range and Doppler resolution is defined. More specifically, the signal ambiguity function gives approximately 20km of range resolution and 40Hz Doppler resolution. A coverage prediction tool, based on the bistatic radar equation, including the aforementioned clutter model; bistatic geometry theory; the effective target RCS; the antenna pattern; the AIS air interface parameters is made. The tool estimates the possible P-AIS coverage area. The work concludes that: even in case of high sea state, the sea is considered as a smooth surface reflection for low grazing angle of observation in the VHF range; the equidistant SNR areas change from Cassini shape to single oval receiver centered; the AIS energy provides excellent target “visibility” if the clutter is not considered. Discussions for further clutter reduction and system sophistication are arisen.JRC.G.4-Maritime affair

    On the Use of High-Frequency Surface Wave Oceanographic Research Radars as Bistatic Single-Frequency Oblique Ionospheric Sounders

    Get PDF
    We demonstrate that bistatic reception of high-frequency oceanographic radars can be used as single-frequency oblique ionospheric sounders. We develop methods that are agnostic of the software-defined radio system to estimate the group range from the bistatic observations. The group range observations are used to estimate the virtual height and equivalent vertical frequency at the midpoint of the oblique propagation path. Uncertainty estimates of the virtual height and equivalent vertical frequency are presented. We apply this analysis to observations collected from two experiments run at two locations in different years, but utilizing similar software-defined radio data collection systems. In the first experiment, 10 d of data were collected in March 2016 at a site located in Maryland, USA, while the second experiment collected 20 d of data in October 2020 at a site located in South Carolina, USA. In both experiments, three Coastal Oceanographic Dynamics and Applications Radars (CODARs) located along the Virginia and North Carolina coast of the US were bistatically observed at 4.53718 MHz. The virtual height and equivalent virtual frequency were estimated in both experiments and compared with contemporaneous observations from a vertical incident digisonde-ionosonde at Wallops Island, VA, USA. We find good agreement between the oblique CODAR-derived and WP937 digisonde virtual heights. Variations in the virtual height from the CODAR observations and the digisonde are found to be nearly in phase with each other. We conclude from this investigation that observations of oceanographic radar can be used as single-frequency oblique incidence sounders. We discuss applications with respect to investigations of traveling ionospheric disturbances, studies of day-to-day ionospheric variability, and using these observations in data assimilation

    Radar Sub-surface Sensing for Mapping the Extent of Hydraulic Fractures and for Monitoring Lake Ice and Design of Some Novel Antennas.

    Full text link
    Hydraulic fracturing, which is a fast-developing well-stimulation technique, has greatly expanded oil and natural gas production in the United States. As the use of hydraulic fracturing has grown, concerns about its environmental impacts have also increased. A sub-surface imaging radar that can detect the extent of hydraulic fractures is highly demanded, but existing radar designs cannot meet the requirement of penetration range on the order of kilometers due to the exorbitant propagation loss in the ground. In the thesis, a medium frequency (MF) band sub-surface radar sensing system is proposed to extend the detectable range to kilometers in rock layers. Algorithms for cross-hole and single-hole configurations are developed based on simulations using point targets and realistic fractured rock models. A super-miniaturized borehole antenna and its feeding network are also designed for this radar system. Also application of imaging radars for sub-surface sensing frozen lakes at Arctic regions is investigated. The scattering mechanism is the key point to understand the radar data and to extract useful information. To explore this topic, a full-wave simulation model to analyze lake ice scattering phenomenology that includes columnar air bubbles is presented. Based on this model, the scattering mechanism from the rough ice/water interface and columnar air bubbles in the ice at C band is addressed and concludes that the roughness at the interface between ice and water is the dominate contributor to backscatter and once the lake is completely frozen the backscatter diminishes significantly. Radar remote sensing systems often require high-performance antennas with special specifications. Besides the borehole antenna for MF band subsurface imaging system, several other antennas are also designed for potential radar systems. Surface-to-borehole setup is an alternative configuration for subsurface imaging system, which requires a miniaturized planar antenna placed on the surface. Such antenna is developed with using artificial electromagnetic materials for size reduction. Furthermore, circularly polarized (CP) waveform can be used for imaging system and omnidirectional CP antenna is needed. Thus, a low-profile planar azimuthal omnidirectional CP antenna with gain of 1dB and bandwidth of 40MHz is designed at 2.4GHz by combining a novel slot antenna and a PIFA antenna.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120674/1/wujf_1.pd

    Introduction to radar scattering application in remote sensing and diagnostics: Review

    Get PDF
    The manuscript reviews the current literature on scattering applications of RADAR (Radio Detecting And Ranging) in remote sensing and diagnostics. This paper gives prime features for a variety of RADAR applications ranging from forest and climate monitoring to weather forecast, sea status, planetary information, and mapping of natural disasters such as the ones caused by earthquakes. Both the fundamental parameters involved in scattering mechanisms of RADAR applications and the factors affecting RADAR performances are also discusse

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    A nonlinear approach to ocean wave spectrum extraction from bistatic HF-radar data

    Get PDF
    In this thesis, a new approach to the extraction of the directional ocean wave spectrum from bistatic high frequency (HF) radar data is proposed. The proposed method relies on the simplification of the second-order bistatic radar cross-section, analogous to the one presented by Shahidi and Gill [1] for the monostatic case, to facilitate the use of nonlinear optimization methods, such as regularized nonlinear least-squares. Initially, the historic development of the techniques related to the extraction of the ocean wave spectrum from HF radar data is provided in order to contextualize the work of this thesis. Then, an overview of the theory related to ocean waves and the bistatic radar cross-section is shown. Later, the nonlinear optimization method used in this thesis, Tikhonov regularization in Hilbert spaces, is explained, as well as the theoretical background necessary to understand the method. Once the theory is laid out, the simplification of the second-order bistatic HF radar cross section is presented. The simplification consists of a change of variables that allow the use of the “sifting” property of the Dirac delta function. This reduces the dependence of the second-order bistatic cross-section to a single variable. After the simplification process is shown, the methodology for extracting the directional ocean wave spectrum from bistatic HF radar data is discussed. As a proof-of-concept, the method is initially applied to the second-order bistatic cross section, without the presence of noise. The method successfully extracted the directional ocean wave spectrum without assuming any function model for the nondirectional ocean wave spectrum, and assuming a cosine-power model for the directional spreading function. Next, the first-order bistatic HF radar cross section is added to the second-order cross section, and the proposed method is applied, still without noise present. The proposed method was also able to extract the directional ocean wave spectrum and very low error is added by the inclusion of the first-order cross section. Finally, different levels of noise are added to the cross section including the first and second- orders, and the presented method is applied for the extraction. Again, the method yields good results, with acceptable levels of error for the different noise levels. This new approach to the extraction of the directional ocean wave spectrum from bistatic HF radar data presents, to the author’s knowledge, the first nonlinear extraction method for bistatic HF radar data. Further developments of the technique, such as the use of different nonlinear extraction methods, or a general directional spreading function, are suggested

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains reports on twelve research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 85-04381)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-270)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-725)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)U.S. Army - Research Office Durham (Contract DAAG29-85-K-0079)International Business Machines, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-269)Simulation TechnologiesSchlumberger-Doll Researc
    • …
    corecore