1,946 research outputs found

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges.</p

    Integrating operations research into green logistics:A review

    Get PDF
    Logistical activities have a significant global environmental impact, necessitating the adoption of green logistics practices to mitigate environmental effects. The COVID-19 pandemic has further emphasized the urgency to address the environmental crisis. Operations research provides a means to balance environmental concerns and costs, thereby enhancing the management of logistical activities. This paper presents a comprehensive review of studies integrating operations research into green logistics. A systematic search was conducted in the Web of Science Core Collection database, covering papers published until June 3, 2023. Six keywords (green logistics OR sustainable logistics OR cleaner logistics OR green transportation OR sustainable transportation OR cleaner transportation) were used to identify relevant papers. The reviewed studies were categorized into five main research directions: Green waste logistics, the impact of costs on green logistics, the green routing problem, green transport network design, and emerging challenges in green logistics. The review concludes by outlining suggestions for further research that combines green logistics and operations research, with particular emphasis on investigating the long-term effects of the pandemic on this field.</p

    Special issue on “Green urban transportation”

    Get PDF

    Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation

    Full text link
    [EN] The increasing use of electric vehicles in road and air transportation, especially in last-mile delivery and city mobility, raises new operational challenges due to the limited capacity of electric batteries. These limitations impose additional driving range constraints when optimizing the distribution and mobility plans. During the last years, several researchers from the Computer Science, Artificial Intelligence, and Operations Research communities have been developing optimization, simulation, and machine learning approaches that aim at generating efficient and sustainable routing plans for hybrid fleets, including both electric and internal combustion engine vehicles. After contextualizing the relevance of electric vehicles in promoting sustainable transportation practices, this paper reviews the existing work in the field of electric vehicle routing problems. In particular, we focus on articles related to the well-known vehicle routing, arc routing, and team orienteering problems. The review is followed by numerical examples that illustrate the gains that can be obtained by employing optimization methods in the aforementioned field. Finally, several research opportunities are highlighted.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T), the SEPIE Erasmus+Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Do C. Martins, L.; Tordecilla, RD.; Castaneda, J.; Juan-Pérez, ÁA.; Faulin, J. (2021). Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies. 14(16):1-30. https://doi.org/10.3390/en14165131130141

    An agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains

    Get PDF
    This paper aims to model and minimize transportation costs in collecting tree logs from several regions and delivering them to the nearest collection point. This paper presents agent-based modeling (ABM) that comprehensively encompasses the key elements of the pickup and delivery supply chain model and presents the units as autonomous agents communicating. The modeling combines components such as geographic information systems (GIS) routing, potential facility locations, random tree log pickup locations, fleet sizing, trip distance, and truck and train transportation. ABM models the entire pickup and delivery operation, and modeling outcomes are presented by time series charts such as the number of trucks in use, facilities inventory, and travel distance. In addition, various simulation scenarios are used to investigate potential facility locations and truck numbers and determine the optimal facility location and fleet size.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Two Efficient Meta-Heuristic Algorithms for the Robust Inventory Routing Problem with Backhaul

    Get PDF
    The inventory routing problem (IRP) involves the integration and coordination of two components of the logistics value chain: inventory management and vehicle routing. Therefore, consideration of this issue can be effective in decision making of the organization and will lead to lower costs or other goals. Our objective in this article is to examine a new inventory-routing model and solve it with meta-heuristic methods. For more flexibility of the model, and approaching the real world, the model of this article is considered multi-period and multi-product. Also, two objective functions, including minimizing system costs and transportation risk, are included in this model. Given that the main parameter of the model, that is, demand, is uncertain, we have used a robust optimization approach to solve it, and since this model is in the classification of NP-Hard problems, we have used two meta-heuristic algorithms consisting of non-dominated sorting genetic algorithm (NSGA-II) and a multi-objective imperialist competitive algorithm (MOICA). By examining the model in two deterministic and robust conditions, according to two criteria, the mean values of the objective function and its standard deviation, it has been determined that in almost all cases, the robust optimization model produces better solutions. Also, between the two meta-heuristics method, the NSGA-II algorithm has shown better quality according to the mentioned criteria. Obviously, taking into account the different features of a model increases its efficiency. But this, obviously, makes the model even more complex. However, this complexity of models can work like a real system. Our attention in this article has been to this subject. To analyze such models, exact methods do not have the required performance and paying attention to heuristic and meta-heuristic methods is very effective. In this paper, a robust optimization and meta-heurictic approaches focus on these goals
    corecore