1,989 research outputs found

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5−c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5−c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem

    Some combinational optimization problems on radio network communication and machine scheduling

    Get PDF
    The combinatorial optimization problems coming from two areas are studied in this dissertation: network communication and machine scheduling. In the network communication area, the complexity of distributed broadcasting and distributed gossiping is studied in the setting of random networks. Two different models are considered: one is random geometric networks, the main model used to study properties of sensor and ad-hoc networks, where ri points are randomly placed in a unit square and two points are connected by an edge if they are at most a certain fixed distance r from each other. The other model is the so-called line-of-sight networks, a new network model introduced recently by Frieze et al. (SODA\u2707). The nodes in this model are randomly placed (with probability p) on an n x n grid and a node can communicate with all the nodes that are in at most a certain fixed distance r and which are in the same row or column. It can be shown that in many scenarios of both models, the random structure of these networks makes it possible to perform distributed gossiping in asymptotically optimal time 0(D), where D is the diameter of the network. The simulation results show that most algorithms especially the randomized algorithm works very fast in practice. In the scheduling area, the first problem is online scheduling a set of equal processing time tasks with precedence constraints so as to minimize the makespan. It can be shown that Hu \u27s algorithm yields an asymptotic competitive ratio of 3/2 for intree precedence constraints and an asymptotic competitive ratio of 1 for outtree precedences, and Coffinan-Graham algorithm yields an asymptotic competitive ratio of 1 for arbitrary precedence constraints and two machines.The second scheduling problem is the integrated production and delivery scheduling with disjoint windows. In this problem, each job is associated with a time window, and a profit. A job must be finished within its time window to get the profit. The objective is to pick a set ofjobs and schedule them to get the maximum total profit. For a single machine and unit profit, an optimal algorithm is proposed. For a single machine and arbitrary profit, a fully polynomial time approximation scheme(FPTAS) is proposed. These algorithms can be extended to multiple machines with approximation ratio less than e/(e - 1). The third scheduling problem studied in this dissertation is the preemptive scheduling algorithms with nested and inclusive processing set restrictions. The objective is to minimize the makespan of the schedule. It can be shown that there is no optimal online algorithm even for the case of inclusive processing set. Then a linear time optimal algorithm is given for the case of nested processing set, where all jobs are available for processing at time t = 0. A more complicated algorithm with running time 0(n log ri) is given that produces not only optimal but also maximal schedules. When jobs have different release times, an optimal algorithm is given for the nested case and a faster optimal algorithm is given for the inclusive processing set case

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂźbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael MarhĂśfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂŠ, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn
    • …
    corecore