
STOCHASTIC MACHINE SCHEDULING WITH PRECEDENCE

CONSTRAINTS∗

MARTIN SKUTELLA‡ AND MARC UETZ§

Abstract. We consider parallel, identical machine scheduling problems where the jobs are
subject to precedence constraints, release dates, and the processing times of jobs are governed by
independent probability distributions. The objective is to minimize the expected value of the total
weighted completion time. Building upon a linear programming relaxation by Möhring, Schulz, and
Uetz (J. ACM 46, 1999, 924–942) and a delayed list scheduling algorithm by Chekuri, Motwani,
Natarajan, and Stein (SIAM J. Comput. 31, 2001, 146–166), we derive the first constant-factor
approximation algorithms for this model.

Key words. approximation algorithms, stochastic scheduling, parallel machines, precedence
constraints, release dates, list scheduling algorithms, LP relaxation

AMS subject classifications. 68M20, 68Q25, 68W25, 68W40, 90B36, 90C05

1. Introduction. This paper addresses stochastic parallel machine scheduling
problems with the objective to minimize the total weighted completion time in expec-
tation. Machine scheduling problems have attracted researchers for decades since they
play an important role in various applications from the areas of operations research,
management science, and computer science. The total weighted completion time ob-
jective is of particular importance in scheduling environments where many jobs are
to be scheduled on a limited number of machines, and a good average performance is
desired. Prominent examples for such a scheduling situation are problems that arise,
e.g., in compiler optimization [4] and in parallel computing [2]. The main characteris-
tic of stochastic scheduling problems is the fact that the processing times of the jobs
may be subject to random fluctuations. Hence, the effective processing times are not
known with certainty in advance. This assumption is of particular practical relevance
in many applications.

Problem Definition. Denote by V = {1, . . . , n} a set of jobs which must be
scheduled on m parallel, identical machines. Each machine can handle only one job
at a time, and the jobs can be scheduled on any of the machines. Once the processing
of a job is started on one machine, it must be processed without preemption on this
machine. Precedence constraints are given by an acyclic digraph G = (V,A), where
any arc (i, j) ∈ A restricts the start time of job j to be not earlier than the completion
time of job i. We consider problems with and without release dates rj for the jobs,
with the intended meaning that job j must not start earlier than rj . In the classical
(deterministic) setting, the objective is to minimize the total weighted completion time

∗This work was done while both authors were with Technische Universität Berlin, Germany. An
extended abstract [20] appeared in the Proceedings of the 12th Annual ACM–SIAM Symposium on
Discrete Algorithms, SODA 2001.

‡Max-Planck Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany
(skutella@mpi-sb.mpg.de). Supported in part by the EU Thematic Networks APPOL I+II, Approx-
imation and Online Algorithms, IST-1999-14084 and IST-2001-30012, and by the DFG Research
Center ‘Mathematics for key technologies: Modelling, simulation and optimization of real-world
processes’.

§Faculty of Economics and Business Administration, Quantitative Economics, Universiteit Maas-
tricht, NL-6200 MD Maastricht, The Netherlands (m.uetz@ke.unimaas.nl). Supported in part by the
German-Israeli Foundation for Scientific Research and Development (GIF), grant I 246-304.02/97,
and by the Deutsche Forschungsgemeinschaft (DFG), grant Mo 446/3-4.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6818957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 M. SKUTELLA AND M. UETZ

∑

j∈V wj Cj , where wj is a non-negative weight and Cj denotes the completion time
of job j. In the stochastic model, it is assumed that the processing time pj of a job j is
not known in advance. It becomes known only upon completion of the job. However,
the distribution of the corresponding random variable Pj is given beforehand. Let
P = (P1, . . . , Pn) denote the vector of random variables for the processing times, and
denote by p = (p1, . . . , pn) a particular realization of the processing times. By E[Pj]
we denote the expected processing time of a job j. We assume throughout that the
processing times of the jobs are stochastically independent. In the classical α |β | γ
notation of Graham et al. [9], the problem of minimizing the expected total weighted
completion time can be denoted by P| prec, rj |E [

∑

wj Cj]. Here, P stands for the
parallel machine environment, prec and rj for the existence of precedence constraints
and release dates, respectively, and E [

∑

wj Cj] denotes the objective to minimize the
expected total weighted completion time.

Dynamic view on stochastic scheduling. The twist from deterministic to
stochastic processing times changes the nature of the scheduling problem considerably.
The solution of a stochastic scheduling problem is no longer a simple schedule, but a
so-called scheduling policy. We adopt the notion of scheduling policies as defined by
Möhring, Radermacher, and Weiss [14]. In the following, we briefly summarize what
that means.

Apart from the data that specifies the input of the problem, the state of the
system at any time t > 0 is determined by the time t itself, as well as the (conditional)
probability distributions of the jobs’ processing times. At any time t > 0, the state
thus depends on the observed past up to time t. This is the start and completion
times of the jobs already completed by t, together with the start times of the jobs
in process at time t. The action of a scheduling policy at time t is given by a set
of jobs B(t) ⊆ V that is started at t, together with a tentative next decision time
ttent > t. The tentative decision time ttent is the latest point in time when the next
action of the policy takes place, subject to the condition that no other job is released
or ends before ttent. Notice that B(t) may be empty, and ttent = ∞ implies that the
next action of the policy takes place when the next job is released or some job ends,
whatever occurs first. Of course, the definition of B(t) must respect potential release
dates and precedence constraints, and the number of available machines. A policy is
required to be non-anticipatory, meaning that the action of a policy at any time t
must only depend on the state of the system at time t (together with the given input
data, of course). The time instances when a policy takes its actions are called decision

times. Given an action of a policy at a decision time t, the next decision time is ttent,
or the time of the next job completion, or the time when the next job is released,
whatever occurs first. Depending on the action of the policy, the state at the next
decision time is realized according to the (conditional) probability distributions of the
jobs’ processing times.

A given policy eventually yields a feasible m-machine schedule for each realiza-
tion p of the processing times. For a given policy, denoted by Π, let SΠ

j (p) and CΠ
j (p)

denote the start and completion times of job j for a given realization p, and let SΠ
j (P)

and CΠ
j (P) denote the associated random variables.

Approximation. It follows from simple examples that, in general, a scheduling
policy cannot yield the optimal schedule for each possible realization of the processing
times, see e.g. [21]. Hence, our goal is to find a policy Π which minimizes the objective,
say ZΠ(P), in expectation. But even under this mild notion of optimality, few spe-

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 3

cial cases exist for which optimal scheduling policies are known to be efficiently com-
putable. One example is the optimality of list scheduling according to SEPT (shortest
expected processing time first) for the problem without precedence constraints or re-
lease dates, with unit weights, and with exponentially distributed processing times,
P| pj ∼ exp(λj)|E [

∑

Cj] [1, 24]. This result was extended by Kämpke [12] to the case
where the weights wj are compliant with the expected processing times. In general,
however, there exist examples which show that optimal policies can be rather compli-
cated in the sense that they must indeed utilize the full information on the conditional
distributions of the jobs’ processing times, see e.g. [22]. In this paper, we therefore
concentrate on approximation algorithms. In stochastic scheduling, a scheduling pol-
icy Π is said to be an α-approximation if its expected performance E[ZΠ(P)] is within
a factor of α of the expected performance E[ZΠ∗

(P)] of an optimal (non-anticipatory)
scheduling policy Π∗. The value α is called the performance guarantee.

List scheduling policies. There exist essentially three different classes of list
scheduling policies, all of which have in common that there is a fixed priority list L
of the jobs which determines the order in which the jobs are considered. We call a
job j available with respect to a partial schedule at time t if all predecessors of j are
completed by t and if rj 6 t.

Graham’s list scheduling. This is perhaps the most natural class of policies, often
referred to as the list scheduling algorithm of Graham [7]. Iterating over decision
times, it greedily starts as many available jobs as possible, always in the order of the
list L. It always holds that ttent = ∞, and jobs are thus started only at release dates
or upon completion of other jobs. If precedence constraints or release dates exist, it
may happen that the order of start times of jobs differs from the order of the jobs in
the priority list L; the jobs are scheduled ‘out of order’ with respect to the priority
list L. For the deterministic problem with makespan objective, P|prec|Cmax, it is well
known that Graham’s list scheduling achieves a performance guarantee of 2 − 1/m
for any priority list of the jobs [7]. This result straightforwardly extends to stochastic
processing times and the expected makespan objective, P| prec|E [Cmax] [3]. For the
expected total weighted completion time, Graham’s list scheduling in the WSEPT
order1 yields a constant-factor approximation for the problem without precedence
constraints or release dates, P||E [

∑

wjCj] [15]. In the presence of release dates or
precedence constraints, even in the deterministic setting, there are examples which
show that the performance of Graham’s algorithm can be arbitrarily bad. For an
example with precedence constraints, see [18].

Job-based list scheduling. This is in fact the same list scheduling policy as before,
only with the additional constraint that no job is started earlier than any of its
predecessors in the priority list L. Hence, this policy preserves the order of the
jobs in the priority list L, at the cost of deliberate idle times on the machines. For
the deterministic problem P|rj , prec|

∑

wjCj , the currently best known performance
guarantee of 4 relies on (a slight variation of) job-based list scheduling, and the priority
list is defined on the basis of an optimal solution to an LP-relaxation [16]. For the
stochastic problem without precedence constraints, P|rj |E [

∑

wjCj], job-based list
scheduling yields a constant performance guarantee, too. This result is also based on a
priority list that is defined on the basis of an optimal solution to an LP-relaxation [15].

Delayed list scheduling. As a matter of fact, approximation results for stochastic
parallel machine scheduling were previously known only for problems without prece-

1In the WSEPT order, jobs appear in non-increasing order of the ratios wj/E[Pj].

4 M. SKUTELLA AND M. UETZ

dence constraints [23, 15]. In this paper, we close this gap, relying on yet another
class of list scheduling policies which generalizes both Graham’s and job-based list
scheduling. It has been suggested in a paper by Chekuri et al. [5] to obtain a 5.828-
approximation for the deterministic problem P|rj , prec|

∑

wj Cj . We consider the
analogous stochastic variant of this algorithm. The basic idea is to extend Graham’s
list scheduling in such a way that a job may be scheduled out of order only if a certain
amount of deliberate idle time has accumulated before. Thus, in this algorithm we
use values ttent < ∞, and jobs may be started at times different from release dates or
completion times of other jobs. The algorithm is parametric on a parameter β > 0
that controls the tradeoff between the amount of ‘out of order’ processing of jobs and
the desire to adhere to the order of the given priority list L. For β = 0 and β = ∞
we get Graham’s and job-based list scheduling, respectively. The algorithm will be
described in more detail in § 2.

Contribution of this paper. We derive the first constant performance guar-
antees for stochastic parallel machine scheduling with precedence constraints. The
results are derived by heavily borrowing from two previous approaches. On the one
hand, we use (an appropriate adaption of) the delayed list scheduling algorithm of
Chekuri, Motwani, Natarajan, and Stein [5]. On the other hand, the priority list is
derived from an optimal solution for (a generalized version of) the LP-relaxation by
Möhring, Schulz, and Uetz [15]. It seems, however, that only this combination of the
previous techniques is capable of yielding the desired approximation results.

Table 1 gives an overview of performance guarantees for stochastic parallel ma-
chine scheduling problems with the total weighted completion time objective. The
last column indicates which of the results are proved in [15]; the asterisk [∗] indicates
that the results are derived in this paper. The term ∆ denotes some common upper
bound on the values Var[Pj]/(E [Pj])

2, for all jobs j ∈ V . In other words,
√

∆ is a

common upper bound on the coefficient of variation CV [Pj] =
√

Var[Pj]/E [Pj] for
all processing time distributions Pj , j ∈ V . Moreover, the number of machines is
denoted by m, and β is the non-negative parameter used to control the delayed list
scheduling algorithm. The third column shows the respective performance bounds for
processing time distributions where the coefficient of variation is bounded by 1, which
is the case for exponential, uniform, or Erlang distributions, to name a few.

Table 1
Performance bounds for stochastic scheduling problems. Asterisks [∗] mark results of this paper.

scheduling model performance guarantee
arbitrary Pj CV[Pj] 6 1

1|prec|E [
∑

wjCj] 2 2 [15]
1|rj , prec|E [

∑

wjCj] 3 3 [15]
P| |E [

∑

wjCj] 1 + (m−1)(∆+1)
2m

2 − 1
m

[15]

P|rj |E [
∑

wjCj] 3 − 1
m

+ max{1, m−1
m

∆} 4 − 1
m

[15]

P|in-forest|E [
∑

wjCj] 2 − 1
m

+ max{1, m−1
m

∆} 3 − 1
m

[∗]
P|prec|E [

∑

wjCj] (1 + β)
(

1 + m−1
m β

+ max{1, m−1
m

∆}
)

3 + 2
√

2 − 1+
√

2
m

[∗]
P|rj , prec|E [

∑

wjCj] (1 + β)
(

1 + 1
β

+ max{1, m−1
m

∆}
)

3 + 2
√

2 [∗]

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 5

Relations to online optimization and other models. Compared to the
model described above, on-line optimization is another way of coping with the fact
that the future is uncertain. We refer to Fiat and Woeginger [6] for details on on-
line optimization. There is, however, a significant difference between the underlying
paradigms of the above described analysis and the usual competitive analysis that
is prevailing in on-line optimization. First, competitive analysis is based upon the
ex-post comparison ‘What was achieved under uncertainty about the future, and what

could have been achieved if the future would not have been uncertain?’. This is ex-
pressed by the fact that the adversary is generally an oracle that knows the optimal
solution. In contrast, stochastic scheduling addresses the ex-ante question ‘What is

the best that can be achieved under the given uncertainty about the future?’. Here, the
underlying adversary is much weaker: the adversary must not anticipate future in-
formation, just like the policy itself. Second, in competitive analysis the adversary is
allowed to determine, to a certain extent, the input distribution. This is not the case
in the stochastic model considered here, since the input distributions are considered
fixed. It is interesting to note that two generalized on-line frameworks were suggested
by Koutsoupias and Papadimitriou [13]. They restrict the adversary’s power in two
ways: Its ability to choose an input distribution, and its ability to find an optimal
solution. To some extent, the stochastic scheduling model incorporates both ideas,
too. We refer to [13] for details, and to the PhD thesis [21] for a brief discussion.
Another type of analysis for stochastic models has been proposed recently by Schar-
brodt, Schickinger, and Steger [17]. If ZOPT(p) is the optimal solution value for a
realization p, they analyze the expected competitive ratio E[ZΠ(P)/ZOPT(P)]. In this
type of analysis the adversary is again an oracle that knows the optimal solution.
We refer to [17] for a more detailed discussion of the benefits of their approach in
comparison to the approach of this paper.

2. List scheduling with deliberate idle times. We start with a few prelimi-
naries that will be used later in the analysis. First, recall that we call a job j available

with respect to a partial schedule at time t if all predecessors of j are completed by t
and if rj 6 t.

Assumption 2.1. For any instance of P|rj , prec| γ , assume that rj > ri when-

ever job i is a predecessor of job j in the precedence constraints.

(Here, γ is used to denote an arbitrary objective function.) Obviously, Assump-
tion 2.1 can be made without loss of generality. Additionally, we use the following
definitions.

Definition 2.2 (critical predecessor). Let some realization p of the processing

times and a feasible schedule be given. For any job j, a critical predecessor of j is

a predecessor i of j (with respect to the precedence constraints) with Ci > rj and Ci

maximal among all predecessors.

Definition 2.3 (critical chain). Let some realization p of the processing times

and a feasible schedule be given. For a given job j, a critical chain for job j and its

length ℓj(p) is defined backwards recursively: If j has no critical predecessor, j is the

only job in the critical chain, and ℓj(p) = rj + pj. Otherwise, ℓj(p) = pj + ℓk(p),
where job k is a critical predecessor of job j.

Definition 2.3 is illustrated in Figure 1. Notice that the critical chain as well
as its length ℓj(p) depend on both the realization of the processing times p and the
underlying schedule. Moreover, since a critical predecessor is not necessarily unique,
the critical chain and its length also depend on a tie-breaking rule for choosing critical
predecessors. This is not relevant for our analysis, but in order to make the above

6 M. SKUTELLA AND M. UETZ

definition unique, let us suppose that some arbitrary but fixed tie-breaking rule is
used. Notice further that the first job j1 of a critical chain is available at its release
date rj1 . This follows directly from the definition.

jh = j

Cjrj1

j1

j2

j3

Figure 1. Example of a critical chain for job j. Its length is ℓj(p) = rj1 +
∑h

i=1 pji
.

Like Graham’s list scheduling, the algorithm we use iterates over decision times
until all jobs have been scheduled. Assume a priority list L is given. Like with job-
based list scheduling, the algorithm strives to schedule the jobs in the order of the
list L by leaving deliberate idle times. But if the accumulating deliberate idle time
exceeds a certain threshold, the algorithm ‘panics’ and schedules the first available
job from the list. The algorithm is parametric on a parameter β > 0 that controls
the tradeoff between the amount of ‘out of order’ processing of jobs, and the desire
to adhere to the order of the given priority list L. At each stage of the algorithm,
the sub-list of L containing all jobs that are not scheduled yet is referred to as the
residual list. The following is a direct adaptation of the algorithm introduced by
Chekuri, Motwani, Natarajan, and Stein [5].

Algorithm CMNS2. Whenever a machine is idle and the first job
in the residual list is available, the job is scheduled. Otherwise, if the
first job is not available, the first available job j in the residual list
(if any) is deliberately delayed. If j was deliberately delayed for an
accumulated time of βE[Pj], it is scheduled out of order.

We emphasize that deliberate idle time accumulates m′ times faster when a job
is deliberately delayed while m′ machines are idle. For the purpose of analyzing the
performance of Algorithm CMNS, any job j gets charged the deliberate idle time
that accumulates during time intervals when j is deliberately delayed. An alternative
interpretation is the following: whenever a job j is deliberately delayed, the tentative
next decision time ttent is that point in time where the accumulated deliberate idle
time charged to job j would equal βE[Pj].

Analogous to [5], we introduce some additional notation. For a given job j, denote
by Bj and Aj the sets of jobs that come before and after job j in the priority list L,
respectively; by convention, Bj also includes job j. For the remaining definitions,
we consider a fixed realization p of the processing times and the resulting schedule
constructed by Algorithm CMNS. Then, rj(p) > rj denotes the earliest point in time
when job j becomes available; let j1, j2, . . . , jh = j be the critical chain for job j and
define Bj(p) := Bj \ {j1, . . . , jh}. That is, the set Bj(p) contains all jobs that come
before job j in the priority list L, except for those which belong to the critical chain.
Moreover, let Oj(p) ⊆ Aj be the jobs in Aj that are started out of order, that is,
before j.

2The only difference from the algorithm presented in [5] is the use of the threshold βE[Pj]
instead of βpj . The algorithm coincides with the classical list scheduling algorithm of Graham [7] if
we choose β = 0, and it coincides with the job-based list scheduling algorithm if we choose β = ∞.

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 7

The following observation is the analog to the results for the deterministic setting
by Chekuri et al. [5, Fact 4.6 & Lemma 4.7].

Observation 2.4. For any realization p of the processing times and any job j:

(i) job j is charged no more than β E[Pj] deliberate idle time;

(ii) the deliberate idle time in [rj(p), Sj(p)[is charged only to jobs in Bj;

(iii) there is no uncharged deliberate idle time.

Proof. Part (i) follows by construction of the algorithm and part (iii) by definition
of deliberate idle time. Finally, for (ii), observe that no job from Aj is the first
available job from the residual list in the time interval [rj(p), Sj(p)[, since job j is
available from rj(p) on, and j has higher priority than any job in Aj .

The following analysis of Algorithm CMNS closely resembles the analysis per-
formed in [5] for the deterministic case. We first derive an upper bound on the
completion time of any job for a fixed realization p.

Lemma 2.5. Consider the schedule constructed by Algorithm CMNS for any β >

0, any realization p of the processing times, and any priority list L which is a linear

extension of the precedence constraints. Let Cj(p) denote the resulting completion

time of any job j, and let ℓj(p) denote the length of the critical chain for job j. Then

Cj(p) 6
m − 1

m
ℓj(p) +

1

m
rj +

1

m

∑

i∈Bj

(pi + β E[Pi]) +
∑

i∈Oj(p)

pi

 . (2.1)

Proof. The basic idea resembles Graham’s analysis for the makespan objec-
tive [7]. Consider the critical chain for job j with total length ℓj(p), consisting of
jobs j1, j2, . . . , jh = j. Now partition the interval [rj1 , Cj(p)[into time intervals where
some job from the critical chain is in process and the remaining time intervals. The
latter are exactly [ri(p), Si(p)[, i = j1, . . . , jh. (Recall that rj1 = rj1(p) due to the
definition of the critical chain). By definition,

Cj(p) = ℓj(p) +

jh
∑

i=j1

(

Si(p) − ri(p)
)

. (2.2)

To bound the total length of the intervals [ri(p), Si(p)[, i = j1, . . . , jh, observe that
in each of these intervals there is no idle time except (possibly) deliberate idle time,
since job i is available in [ri(p), Si(p)[. Hence, the total processing in these intervals
can be partitioned into three categories:

– processing of jobs from Bj which do not belong to the critical chain, i.e., jobs in
Bj(p),

– deliberate idle time,
– processing of jobs from Aj which are scheduled ‘out of order’, i.e., jobs in Oj(p).

Due to Observation 2.4 (ii), all deliberate idle time in the interval [ri(p), Si(p)[is
charged only to jobs in Bi, i = j1, . . . , jh. Since the priority list L is a linear extension
of the precedence constraints, we have Bj1 ⊂ Bj2 ⊂ · · · ⊂ Bjh

= Bj . Hence, all
deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to jobs
in Bj . Since there is no uncharged deliberate idle time (Observation 2.4 (iii)), and
since each job i ∈ Bj gets charged no more than β E[Pi] idle time (Observation 2.4 (i)),
the total amount of deliberate idle time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh,

8 M. SKUTELLA AND M. UETZ

is bounded from above by β
∑

i∈Bj
E[Pi]. This yields

jh
∑

i=j1

(

Si(p) − ri(p)
)

6
1

m

∑

i∈Bj(p)

pi +
∑

i∈Bj

β E[Pi] +
∑

i∈Oj(p)

pi

 . (2.3)

Finally, due to Assumption 2.1 we have rj1 6 rj , thus

∑

i∈Bj(p)

pi 6
∑

i∈Bj

pi −
(

ℓj(p) − rj

)

. (2.4)

Now put (2.4) into (2.3), and then (2.3) into (2.2), and the claim follows.
Before we take expectations in (2.1), we concentrate on the term

∑

i∈Oj(p) pi.

The following lemma shows that the expected total processing of the jobs in Oj(p) —
the jobs that are scheduled out of order with respect to j (and p) — is independent
of their actual processing times.

Lemma 2.6. E

[

∑

i∈Oj(P)

Pi

]

= E

[

∑

i∈Oj(P)

E[Pi]

]

.

Proof. We can write
∑

i∈Oj(P) Pi equivalently as
∑

i∈Aj
δi(P)Pi, where δi(P) is

a binary random variable which is 1 if and only if i ∈ Oj(p). Linearity of expectation
yields

E

[

∑

i∈Oj(P)

Pi

]

= E

[

∑

i∈Aj

δi(P)Pi

]

=
∑

i∈Aj

E[δi(P)Pi] .

Notice that δi(P) is dependent on βE[Pi] but stochastically independent of Pi as the
decision to process job i out of order is made before it is actually processed. (Here
we require that the processing times are stochastically independent, and that policies
are non-anticipatory.) Hence,

∑

i∈Aj

E[δi(P)Pi] =
∑

i∈Aj

E[δi(P)]E[Pi] =
∑

i∈Aj

E
[

δi(P)E[Pi]
]

= E

[

∑

i∈Oj(P)

E[Pi]

]

.

This concludes the proof.
The following lemma bounds the expected amount of processing of jobs from Aj

which are scheduled ‘out of order’ in terms of the expected length of the critical chain
for job j; compare [5, Lemma 4.8].

Lemma 2.7.
1

m
E

[

∑

i∈Oj(P)

E[Pi]

]

6
1

β
E[ℓj(P)] .

Proof. Consider a fixed realization p of the processing times. If some job i ∈ Aj

is scheduled out of order, i gets charged exactly β E[Pi] deliberate idle time. Hence,
the total amount of deliberate idle time in [0, Sj(p)[that is charged to jobs in Oj(p)
is β

∑

i∈Oj(p) E[Pi]. Now consider the critical chain j1, . . . , jh = j for job j with

total length ℓj(p). From the proof of Lemma 2.5, we know that all deliberate idle
time in the intervals [ri(p), Si(p)[, i = j1, . . . , jh, is charged only to jobs in Bj . In
other words, all deliberate idle time in [0, Sj(p)[that is charged to jobs in Aj lies in
the complementary intervals [0, rj1 [and [Si(p), Ci(p)[, i = j1, . . . , jh−1. (Recall that
rj1 = rj1(p) due to the definition of a critical chain.) The total length of these intervals
is exactly ℓj(p)−pj . Hence, the total amount of deliberate idle time in [0, Sj(p)[that is

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 9

charged to jobs in Aj is at most mℓj(p). (In fact, it is at most m (ℓj(p)−pj), but this
is not essential.) Hence, we obtain β

∑

i∈Oj(p) E[Pi] 6 mℓj(p), for any realization p
of the processing times. Taking expectations yields the claimed result.

Finally, we obtain an upper bound on the expected completion time of any job
under Algorithm CMNS; compare [5, Theorem 4.9].

Theorem 2.8. For any instance of a stochastic scheduling problem P|rj , prec| γ
and any priority list L which is a linear extension of the precedence constraints, the

expected completion time of any job j under Algorithm CMNS (with parameter β >

0) fulfills

E[Cj(P)] 6

(m − 1

m
+

1

β

)

E[ℓj(P)] +
1 + β

m

∑

i∈Bj

E[Pi] +
1

m
rj . (2.5)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Taking expectations in (2.1) together with Lemma 2.6 yields

E[Cj(P)] 6
m − 1

m
E[ℓj(P)] +

1

m

(

rj + (1 + β)
∑

i∈Bj

E[Pi] + E

[

∑

i∈Oj(P)

E[Pi]

])

.

Plugging in the inequality from Lemma 2.7 gives the desired result.

3. Linear programming relaxation. To obtain a priority list L as input for
Algorithm CMNS, and to obtain a lower bound on the optimum, Chekuri et al. [5] use a
single machine relaxation. This approach does not help in the stochastic setting, since
the single machine problem does not necessarily provide a lower bound for the parallel
machine problem; see [15, Ex. 4.1] for an example. Instead, we use LP-relaxations
which extend those used by Möhring, Schulz and Uetz [15], adding inequalities which
represent the precedence constraints. First, define f : 2V → IR by

f(W) :=
1

2m

((

∑

j∈W

E[Pj]
)2

+
∑

j∈W

E[Pj]
2
)

− (m − 1)(∆ − 1)

2m

(

∑

j∈W

E[Pj]
2
)

(3.1)

for W ⊆ V . Here, ∆ > 0 is a common upper bound on Var[Pj]/E[Pj]
2 for all jobs

j ∈ V , where Var[Pj] = E[P 2
j] − E[Pj]

2 is the variance of Pj . In other words, the
coefficient of variation

CV[Pj] :=

√

Var[Pj]

E[Pj]

of the distributions Pj is bounded by
√

∆, for all j ∈ V . The following load inequalities

are crucial for the derivation of our results.
Theorem 3.1 ([15, Cor. 3.1]). If CV[Pj] 6

√
∆ for all Pj and some ∆ > 0, the

load inequalities

∑

j∈W

E[Pj] E[CΠ
j (P)] > f(W) (3.2)

are valid for all W ⊆ V and any non-anticipatory scheduling policy Π.

In fact, as mentioned in [15], an upper bound on the coefficients of variation of the
processing time distributions Pj can be a reasonable assumption for many scheduling

10 M. SKUTELLA AND M. UETZ

problems. For instance, assume that job processing times follow so-called NBUE

distributions.

Definition 3.2 (NBUE). A non-negative random variable X is NBUE, ‘new

better than used in expectation’, if E [X − t|X > t] 6 E [X] for all t > 0.

Here, E [X − t|X > t] is the conditional expectation of X−t under the assumption
that X > t. Roughly spoken, when processing times are NBUE, on average it is not
disadvantageous to process a job. Examples for NBUE distributions are, among oth-
ers, exponential, uniform, and Erlang distributions. A result of Hall and Wellner [11]
states that the coefficient of variation CV[X] of any NBUE distribution X is bounded
by 1. Hence, by choosing ∆ = 1 the second term of the right hand side of (3.2) can be
neglected for NBUE distributions, which leads to simplified performance guarantees
in Section 4.

Observe that under any scheduling policy Π the trivial inequalities

E[CΠ
j (P)] > E[CΠ

i (P)] + E[Pj] , (i, j) ∈ A

and

E[CΠ
j (P)] > E[Pj] , j ∈ V

are valid, since they even hold point-wise for any realization of the processing times.
Due to Theorem 3.1, the following is thus a linear programming relaxation for the
problem P|rj , prec|E [

∑

wj Cj] .

minimize
∑

j∈V

wj CLP
j

subject to
∑

j∈W

E[Pj]C
LP
j > f(W) , W ⊆ V ,

CLP
j > CLP

i + E[Pj] , (i, j) ∈ A ,

CLP
j > E[Pj] , j ∈ V ,

where f : 2V → IR is the set function defined in (3.1). It is known that the load
inequalities

∑

j∈W E[Pj]C
LP
j > f(W), W ⊆ V , can be separated in time O(n log n)

[15, 21]. Hence, due to the fact that the remaining number of inequalities is poly-
nomial in terms of n, this LP-relaxation can be solved in time polynomial in n by
the equivalence of separation and optimization [10]. The following technical lemma
of Möhring, Schulz, and Uetz [15] is required later in the analysis.

Lemma 3.3 ([15, Lemma 4.2]). Let CLP ∈ IRn be any point that satisfies the first

and the last set of inequalities from the linear programming relaxation. Assuming

CLP

1 6 CLP

2 6 · · · 6 CLP

n we then have

1

m

j
∑

k=1

E[Pk] 6

(

1 + max{1,
m − 1

m
∆}

)

CLP

j

for all j ∈ V .

4. Results. We are now ready to prove approximation results for stochastic
machine scheduling problems with precedence constraints.

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 11

General precedence constraints. We consider the general problem with prece-
dence constraints and release dates, P|rj , prec|E [

∑

wj Cj] . From an optimal solu-
tion for the LP-relaxation, we define a priority list L according to non-decreasing
‘LP completion times’ CLP

j . It is perhaps interesting to note that inequalities CLP
j >

CLP
i +E[Pj], (i, j) ∈ A, are only required to ensure that the order according to nonde-

creasing LP completion times CLP
j is a linear extension of the precedence constraints.

They are not required elsewhere in the analysis. Moreover, instead of the weaker
inequalities CLP

j > E[Pj] we could as well use CLP
j > rj + E[Pj], but this does not

yield an improvement of our results.
Theorem 4.1. Consider an instance of the stochastic machine scheduling prob-

lem P|rj , prec|E [
∑

wj Cj] with CV[Pj] 6
√

∆ for all processing times Pj and some

∆ > 0. Let L be a priority list according to an optimal solution CLP of the lin-

ear programming relaxation. Then Algorithm CMNS (with parameter β > 0) is an

α-approximation with

α = (1 + β)

(

1 +
1

β
+ max{1,

m − 1

m
∆}

)

.

Proof. Since L is a linear extension of the precedence constraints, Theorem 2.8
yields

E[Cj(P)] 6

(m − 1

m
+

1

β

)

E[ℓj(P)] +
1 + β

m

∑

i∈Bj

E[Pi] +
1

m
rj ,

for any job j ∈ V . (Recall that Bj denotes the jobs that come before job j in the
priority list L.) Lemma 3.3 yields

1

m

∑

i∈Bj

E[Pi] 6

(

1 + max{1,
m − 1

m
∆}

)

CLP
j ,

for all j ∈ V . Hence,

∑

j∈V

wj E[Cj(P)] 6

(

m − 1

m
+

1

β

)

∑

j∈V

wj E[ℓj(P)]

+ (1 + β)

(

1 + max{1,
m − 1

m
∆}

)

∑

j∈V

wj CLP
j +

1

m

∑

j∈V

wj rj .

Now, for any job j and any realization p of the processing times, the length ℓj(p) of
a critical chain for job j is a lower bound for job j’s completion time, ℓj(p) 6 Cj(p).
This is true by definition of a critical chain. Hence, the value E[ℓj(P)] is a lower
bound on the expected completion time E[Cj(P)] of any job j, for any scheduling
policy. (Notice that the critical chain may be different for different realizations of the
processing times, and thus the fact that E[ℓj(P)] 6 E[Cj(P)] cannot be derived from
the precedence constraints in the LP-relaxation.) Thus,

∑

j∈V wj E[ℓj(P)] is a lower
bound on the expected performance of an optimal scheduling policy. Moreover, both
terms

∑

j∈V wj CLP
j and

∑

j∈V wj rj are lower bounds on the expected performance
of an optimal scheduling policy as well. This gives a performance bound of

(

m − 1

m
+

1

β

)

+ (1 + β)

(

1 + max{1,
m − 1

m
∆}

)

+
1

m
.

12 M. SKUTELLA AND M. UETZ

Rearranging the terms yields the desired result.
Notice that Theorem 4.1 implies a performance bound of 3 + 2

√
2 ≈ 5.828 if

β = 1/
√

2 and if the jobs’ processing times are distributed according to NBUE distri-
butions (see Definition 3.2). This matches the performance guarantee achieved in [5]
for the corresponding deterministic scheduling problem P|rj , prec|

∑

wj Cj . The per-
formance bound in Theorem 4.1 can be slightly improved if release dates are absent.

Theorem 4.2. Consider an instance of the stochastic machine scheduling prob-

lem P|prec|E [
∑

wj Cj] with CV[Pj] 6
√

∆ for all processing times Pj and some

∆ > 0. Let L be a priority list according to an optimal solution CLP of the lin-

ear programming relaxation. Then Algorithm CMNS (with parameter β > 0) is an

α-approximation with

α = (1 + β)

(

1 +
m − 1

mβ
+ max{1,

m − 1

m
∆}

)

.

The tighter bound follows from two modifications in the proof of Theorem 4.1.
On the one hand, in the proof of Lemma 2.7, one can show that

1

m
E

[

∑

i∈Oj(P)

E[Pi]

]

6
m − 1

mβ
E[ℓj(P)] .

The reason is that there are only m − 1 machines available for the deliberate idle
time that is charged to jobs which are scheduled out of order: Simultaneous to the
deliberate idle time, at least one job from the critical chain j1, j2, . . . , jh is in process.
(This argument does not hold if release dates are present, since deliberate idle time
could possibly accumulate before rj1 .) On the other hand, it is immediate that the last
term (1/m) rj on the right hand side of (2.5) disappears. With these modifications,
the claim follows exactly as in Theorem 4.1.

In-forest precedence constraints. Let us now turn to the special case of the
problem denoted by P|in-forest|E [

∑

wj Cj] . In-forest precedence constraints are
characterized by the fact that each job has at most one successor. Moreover, we
assume that there are no release dates. For this problem, the results of the preceding
section can be further improved.

We start with the following observation which is also contained in [5, Lemma 4.16];
we nevertheless give a short proof for the sake of completeness.

Lemma 4.3. Consider the schedule constructed by Graham’s list scheduling for

an arbitrary priority list L which is a linear extension of the (in-forest) precedence

constraints, and any realization p of the processing times. Then, in the interval

[rj(p), Sj(p)[there is no processing of jobs in Aj.

Proof. Suppose the claim is false and among all jobs which violate it, let job j be
one that is scheduled earliest. Obviously, Sj(p) > rj(p), otherwise the claim is trivially
true. In the interval [rj(p), Sj(p)[no job from Aj is started, since j is available from
time rj(p) on. Hence, there must be some job k ∈ Aj that has been started before
rj(p) and that is still in process at rj(p). Thus rj(p) > 0. Denote by h the number
of jobs that are started at time rj(p). All of these jobs i have higher priority than j,
and the fact that j is the first job that violates the claim yields ri(p) = rj(p). (At
this point it is crucial that the priority list extends the precedence constraints.) In
other words, for each of these jobs a critical predecessor ends at time rj(p), and due
to the fact that the precedence constraints form an in-forest, all of these predecessors

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 13

are different. Hence, including j’s critical predecessor, h+1 different jobs end at time
rj(p), but only h are started. This is a contradiction since job j is available at time
rj(p).

Lemma 4.4. For any instance of the stochastic scheduling problem P|in-forest| γ
and any priority list L which is a linear extension of the precedence constraints, the

expected completion time of any job j under Graham’s list scheduling fulfills

E[Cj(P)] 6
m − 1

m
E[ℓj(P)] +

1

m

∑

i∈Bj

E[Pi] . (4.1)

(Again, γ is used to denote an arbitrary objective function.)
Proof. Consider any realization p of the processing times. Given any job j,

consider a critical chain for j, consisting of jobs j1, j2, . . . , jh = j and with total
length ℓj(p). The time interval [0, Cj(p)] can be partitioned into time intervals where
a job from a critical chain for j is in process, and the remaining time intervals. Due
to Lemma 4.3, in each time interval [ri(p), Si(p)[there is no job from Ai in process,
for all i = j1, . . . , jh. Moreover, there is no idle time on any of the machines in these
time intervals (we consider Graham’s list scheduling, and there are no release dates).
Since Aj1 ⊃ Aj2 ⊃ · · · ⊃ Ajh

= Aj , it follows that the only processing in these time
intervals is the jobs in Bj , or more precisely, in Bj(p). In other words, the total
processing in these time intervals is at most

∑

i∈Bj
pi − ℓj(p). Hence,

Cj(p) 6
m − 1

m
ℓj(p) +

1

m

∑

i∈Bj

pi ,

for any realization p. Taking expectations, the claim follows.
Theorem 4.5. Consider an instance of P|in-forest|E[

∑

wj Cj] with CV[Pj] 6√
∆ for all processing times Pj and some ∆ > 0. Let L be a priority list according to

an optimal solution CLP of the linear programming relaxation. Then Graham’s list

scheduling is an α-approximation with

α = 2 − 1

m
+ max{1,

m − 1

m
∆} .

Proof. Graham’s list scheduling coincides with Algorithm CMNS for β = 0. The
proof is therefore exactly the same as the one of Theorem 4.1, except that Lemma 4.4
is used instead of Theorem 2.8.

For NBUE distributions (see Definition 3.2), Theorem 4.5 yields a performance
guarantee of 3 − 1/m.

Single machine problems. Theorem 4.2 implies a 2-approximation for the spe-
cial case of a single machine: In this case the term (m − 1)/(mβ) disappears, and
we can choose β = 0 to obtain performance guarantee 2. (For β = 0, the algorithm
corresponds to Graham’s list scheduling.) This holds for arbitrarily distributed, in-
dependent processing times. In fact, this matches the best bound currently known
in the deterministic setting; see Open Problem 9 in the collection of Schuurman and
Woeginger [19].

5. Further Remarks. A scheduling policy defines a mapping of processing
times to start times of jobs. This mapping has to be universally measurable in order

14 M. SKUTELLA AND M. UETZ

to grant existence of the expected objective function value [14]. Without going into
further details we just mention that the scheduling policies discussed in this paper
fulfill this requirement, and we refer to [21, Cor. 3.6.15] for further details.

We point out that, apart from the expected processing times of the jobs, a uni-
form upper bound on their coefficients of variation is the sole stochastic information
required as input for the presented scheduling policy. Nevertheless, in our analysis we
compare its performance to a lower bound on the performance of any non-anticipatory
scheduling policy. This refers to the broadest possible sense of scheduling policies as
defined by Möhring, Radermacher, and Weiss [14]. In particular, an optimal schedul-
ing policy is therefore allowed to take advantage of the complete knowledge of the
conditional distributions of the processing times, at any time.

Finally, we mention that our analysis indeed requires policies to be non-anti-
cipatory, because the linear programming lower bound does not hold otherwise. This
can be seen from the observation that an anticipatory ‘scheduling policy’ could, for
instance, compute an optimal schedule for any realization of the processing times.
Theorem 3.1, however, is no longer valid in this case; see [21]. In other words, our
analysis is based upon an adversary that is just as powerful as the scheduling policy
itself. This constitutes a major difference compared to the rather ‘unfair’ competitive
analysis known from on-line optimization.

Acknowledgments. We thank the anonymous referee for many valuable com-
ments and suggestions for improvements. In particular, the compact formulation of
the algorithm in § 2 was kindly proposed by the referee.

REFERENCES

[1] J. L. Bruno, P. J. Downey, and G. N. Frederickson, Sequencing tasks with exponential

service times to minimize the expected flowtime or makespan, Journal of the Association
for Computing Machinery, 28 (1981), pp. 100–113.

[2] S. Chakrabarti and S. Muthukrishnan, Resource scheduling for parallel database and sci-

entific applications, in Proceedings of the 8th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, Padua, Italy, 1996, pp. 329–335.

[3] K. M. Chandy and P. F. Reynolds, Scheduling partially ordered tasks with probabilistic

execution times, Operating Systems Review, 9 (1975), pp. 169–177.
[4] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and M. Schlansker, An

analysis of profile-driven instruction level parallel scheduling with application to super

blocks, in Proceedings of the 29th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, Paris, France, 1996, pp. 58–69.

[5] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, Approximation techniques for aver-

age completion time scheduling, SIAM Journal on Computing, 31 (2001), pp. 146–166.
[6] A. Fiat and G. J. Woeginger (eds.), Online Algorithms: The State of the Art, Lecture Notes

in Computer Science 1442, Springer, Berlin, 1998.
[7] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal,

45 (1966), pp. 1563–1581. see also [8].
[8] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Math-

ematics, 17 (1969), pp. 416–429.
[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and

approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete
Mathematics, 5 (1979), pp. 287–326.

[10] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial op-

timization, vol. 2 of Algorithms and Combinatorics, Springer, Berlin, 1988.
[11] W. J. Hall and J. A. Wellner, Mean residual life, in Proceedings of the International

Symposium on Statistics and Related Topics, M. Csörgö, D. A. Dawson, J. N. K. Rao, and
A. K. Md. E. Saleh (eds.), Ottawa, ON, 1981, North-Holland, Amsterdam, pp. 169–184.

[12] T. Kämpke, On the optimality of static priority policies in stochastic scheduling on parallel

machines, Journal of Applied Probability, 24 (1987), pp. 430–448.

STOCHASTIC SCHEDULING WITH PRECEDENCE CONSTRAINTS 15

[13] E. Koutsoupias and C. H. Papadimitriou, Beyond competitive analysis, SIAM Journal on
Computing, 30 (2000), pp. 300–317.

[14] R. H. Möhring, F. J. Radermacher, and G. Weiss, Stochastic scheduling problems I: General

strategies, ZOR - Zeitschrift für Operations Research, 28 (1984), pp. 193–260.
[15] R. H. Möhring, A. S. Schulz, and M. Uetz, Approximation in stochastic scheduling: The

power of LP-based priority policies, Journal of the Association for Computing Machinery,
46 (1999), pp. 924–942.

[16] A. Munier, M. Queyranne, and A. S. Schulz, Approximation bounds for a general class

of precedence constrained parallel machine scheduling problems, in Proceedings of the 6th
International Conference on Integer Programming and Combinatorial Optimization, Hous-
ton, TX, 1998, R. Bixby, E. A. Boyd, and R. Z. Rios Mercado (eds.), Lecture Notes in
Computer Science 1412, Springer, Berlin, pp. 367–382.

[17] M. Scharbrodt, T. Schickinger, and A. Steger, A new average case analysis for completion

time scheduling, in Proceedings of the 34th ACM Symposium on Theory of Computing,
Montréal, QB, 2002, pp. 170–178.

[18] A. S. Schulz, Polytopes and Scheduling, PhD thesis, Institut für Mathematik, Technische
Universität Berlin, Germany, 1996.

[19] P. Schuurman and G. J. Woeginger, Polynomial time approximation algorithms for machine

scheduling: Ten open problems, Journal of Scheduling, 2 (1999), pp. 203–213.
[20] M. Skutella and M. Uetz, Scheduling precedence-constrained jobs with stochastic processing

times on parallel machines, in Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, Washington, DC, 2001, pp. 589–590.

[21] M. Uetz, Algorithms for Deterministic and Stochastic Scheduling, PhD thesis, Institut für
Mathematik, Technische Universität Berlin, Germany, 2001. Published: Cuvillier Verlag,
Göttingen, Germany.

[22] M. Uetz, When greediness fails: Examples from stochastic scheduling, Operations Research
Letters, 31 (2003), pp. 413–419.

[23] G. Weiss, Turnpike optimality of Smith’s rule in parallel machines stochastic scheduling, Math-
ematics of Operations Research, 17 (1992), pp. 255–270.

[24] G. Weiss and M. Pinedo, Scheduling tasks with exponential service times on non-identical

processors to minimize various cost functions, Journal of Applied Probability, 17 (1980),
pp. 187–202.

