1,189 research outputs found

    Programmable Spectrometry -- Per-pixel Classification of Materials using Learned Spectral Filters

    Full text link
    Many materials have distinct spectral profiles. This facilitates estimation of the material composition of a scene at each pixel by first acquiring its hyperspectral image, and subsequently filtering it using a bank of spectral profiles. This process is inherently wasteful since only a set of linear projections of the acquired measurements contribute to the classification task. We propose a novel programmable camera that is capable of producing images of a scene with an arbitrary spectral filter. We use this camera to optically implement the spectral filtering of the scene's hyperspectral image with the bank of spectral profiles needed to perform per-pixel material classification. This provides gains both in terms of acquisition speed --- since only the relevant measurements are acquired --- and in signal-to-noise ratio --- since we invariably avoid narrowband filters that are light inefficient. Given training data, we use a range of classical and modern techniques including SVMs and neural networks to identify the bank of spectral profiles that facilitate material classification. We verify the method in simulations on standard datasets as well as real data using a lab prototype of the camera

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals from compact binaries

    Get PDF
    Frequency-domain filters for time-windowed gravitational waves from inspiralling compact binaries are constructed which combine the excellent performance of our previously developed time-domain P-approximants with the analytic convenience of the stationary phase approximation without a serious loss in event rate. These Fourier-domain representations incorporate the ``edge oscillations'' due to the (assumed) abrupt shut-off of the time-domain signal caused by the relativistic plunge at the last stable orbit. These new analytic approximations, the SPP-approximants, are not only `effectual' for detection and `faithful' for parameter estimation, but are also computationally inexpensive to generate (and are `faster' by factors up to 10, as compared to the corresponding time-domain templates). The SPP approximants should provide data analysts the Fourier-domain templates for massive black hole binaries of total mass m less than about 40 solar mases, the most likely sources for LIGO and VIRGO.Comment: 50 Pages, 10 Postscript figures, 7 Tables, Revtex, Typos corrected, References updated, Additions on pages 25, 26 and 3

    Wavelets and Face Recognition

    Get PDF

    Wavelet packet based approach for image retrieval in compressed domains

    Get PDF
    Author name used in this manuscript: K. O. ChengAuthor name used in this manuscript: N. F. LawAuthor name used in this manuscript: W. C. SiuRefereed conference paper2011-2012 > Academic research: refereed > Refereed conference paperAccepted ManuscriptPublishe

    An approach to the synthesis of biological tissue

    Get PDF
    Mathematical phantoms developed to synthesize realistic complex backgrounds such as those obtained when imaging biological tissue, play a key role in the quantitative assessment of image quality for medical and biomedical imaging. We present a modeling framework for the synthesis of realistic tissue samples. The technique is demonstrated using radiological breast tissue. The model employs a two-component image decomposition consisting of a slowly, spatially varying mean-background and a residual texture image. Each component is synthesized independently. The approach and results presented here constitute an important step towards developing methods for the quantitative assessment of image quality in medical and biomedical imaging, and more generally image science

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    An Adaptive Hilbert-Huang Transform System

    Get PDF
    This thesis presents a system which can be used to generate Intrinsic Mode Functions and the associated Hilbert spectrum resulting from techniques based on the Empirical Mode Decomposition as pioneered by N. E. Huang at the end of the 20th century. Later dubbed the Hilbert-Huang Transform by NASA, the process of decomposing data manually through repetitive detrending and subtraction followed by applying the Hilbert transform to the results was presented as a viable alternative to the wavelet transform which was gaining traction at the time but had shown significant limitations. In the last 20 years, the Hilbert-Huang Transform has received a lot of attention, but that attention has been miniscule relative to the amount of attention received by wavelet transformation. This is, in part, due to the limitations of the Empirical Mode Decomposition and also in part due to the difficulty in developing a theoretical basis for the manner in which the Empirical Mode Decomposition works. While the question of theoretical foundations is an important and tricky one, this thesis presents a system that breaks many of the previously known limits on band-width resolution, mode mixing, and viable decomposable frequency range relative to sampling frequency of the Empirical Mode Decomposition. Many recent innovations do not simply improve on N. E. Huang’s algorithm, but rather provide new approaches with different decompositional properties. By choosing the best technique at each step, a superior total decomposition can be arrived at. Using the Hilbert-Huang Transform itself during the decomposition as a guide as suggested by R. Deering in 2005, the final HHT can show distinct improvements. The AHHT System utilizes many of the properties of various Empirical Mode Decomposition techniques from literature, includes some novel innovations on those techniques, and then manages the total decomposition in an adaptive manner. The Adaptive Hilbert-Huang Transform System (AHHT) is demonstrated successfully on many different artificial signals, many with varying levels of noise down to -5dB SNR, as well as on an electrocardiogram and for comparison with a surface electromyographic study which found biopotential frequency-shifting associated with the fatigue of fast-twitch muscle fibers
    corecore