4 research outputs found

    A bag of words approach to subject specific 3D human pose interaction classification with random decision forests

    Get PDF
    In this work, we investigate whether it is possible to distinguish conversational interactions from observing human motion alone, in particular subject specific gestures in 3D. We adopt Kinect sensors to obtain 3D displacement and velocity measurements, followed by wavelet decomposition to extract low level temporal features. These features are thengeneralized to form a visual vocabulary that can be further generalized to a set of topics from temporal distributions of visual vocabulary. A subject specific supervised learning approach based on Random Forests is used to classify the testing sequences to seven different conversational scenarios. These conversational scenarios concerned in this workhave rather subtle differences among them. Unlike typical action or event recognition, each interaction in our case contain many instances of primitive motions and actions, many of which are shared among different conversation scenarios. That is the interactions we are concerned with are not micro or instant events, such as hugging and high-five, but rather interactions over a period of time that consists rather similar individual motions, micro actions and interactions. We believe this is among one of the first work that is devoted to subject specific conversational interaction classification using 3D pose features and to show this task is indeed possible

    Whose head?: Subject classification through head motion analysis

    Get PDF

    Random Forest-Based Approach for Maximum Power Point Tracking of Photovoltaic Systems Operating under Actual Environmental Conditions

    Get PDF
    Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability
    corecore