5 research outputs found

    Minimizing the Localization Error in Wireless Sensor Networks Using Multi-Objective Optimization Techniques

    Get PDF
    When it comes to remote sensing applications, wireless sensor networks (WSN) are crucial. Because of their small size, low cost, and ability to communicate with one another, sensors are finding more and more applications in a wide range of wireless technologies. The sensor network is the result of the fusion of microelectronic and electromechanical technologies. Through the localization procedure, the precise location of every network node can be determined. When trying to pinpoint the precise location of a node, a mobility anchor can be used in a helpful method known as mobility-assisted localization. In addition to improving route optimization for location-aware mobile nodes, the mobile anchor can do the same for stationary ones. This system proposes a multi-objective approach to minimizing the distance between the source and target nodes by employing the Dijkstra algorithm while avoiding obstacles. Both the Improved Grasshopper Optimization Algorithm (IGOA) and the Butterfly Optimization Algorithm (BOA) have been incorporated into multi-objective models for obstacle avoidance and route planning. Accuracy in localization is enhanced by the proposed system. Further, it decreases both localization errors and computation time when compared to the existing systems

    Experimental evaluation of UWB indoor positioning for indoor track cycling

    Get PDF
    Accurate radio frequency (RF)-based indoor localization systems are more and more applied during sports. The most accurate RF-based localization systems use ultra-wideband (UWB) technology; this is why this technology is the most prevalent. UWB positioning systems allow for an in-depth analysis of the performance of athletes during training and competition. There is no research available that investigates the feasibility of UWB technology for indoor track cycling. In this paper, we investigate the optimal position to mount the UWB hardware for that specific use case. Different positions on the bicycle and cyclist were evaluated based on accuracy, received power level, line-of-sight, maximum communication range, and comfort. Next to this, the energy consumption of our UWB system was evaluated. We found that the optimal hardware position was the lower back, with a median ranging error of 22 cm (infrastructure hardware placed at 2.3 m). The energy consumption of our UWB system is also taken into account. Applied to our setup with the hardware mounted at the lower back, the maximum communication range varies between 32.6 m and 43.8 m. This shows that UWB localization systems are suitable for indoor positioning of track cyclists

    A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach

    Get PDF
    Accurate and reliable urban water demand prediction is imperative for providing the basis to design, operate, and manage water system, especially under the scarcity of the natural water resources. A new methodology combining discrete wavelet transform (DWT) with an adaptive neuro-fuzzy inference system (ANFIS) is proposed to predict monthly urban water demand based on several intervals of historical water consumption. This ANFIS model is evaluated against a hybrid crow search algorithm and artificial neural network (CSA-ANN), since these methods have been successfully used recently to tackle a range of engineering optimization problems. The study outcomes reveal that 1) data preprocessing is essential for denoising raw time series and choosing the model inputs to render the highest model performance; 2) both methodologies, ANFIS and CSA-ANN, are statistically equivalent and capable of accurately predicting monthly urban water demand with high accuracy based on several statistical metric measures such as coefficient of efficiency (0.974, 0.971, respectively). This study could help policymakers to manage extensions of urban water system in response to the increasing demand with low risk related to a decision

    A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications

    No full text
    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively

    Strategic Environmental Assessment for Municipal Water Demand Based on Climate Change

    Get PDF
    Accurate urban water demand forecasting plays a key role in the planning and design of municipal water supply infrastructure. The reliable prediction of water demand is challenging for water companies, specifically when considering the implications of climate change (Zubaidi et al., 2018). Several studies have documented that weather variables drive water consumption in the short-term, and it enhances the accuracy of the prediction model when it is combined with socio-economic factors. However, the impact of climate change on the municipal water demand has yet to be challenged. To surmount this challenge, more research work is needed to accurately estimate the required quantity of water with increasing water demands. Recently, Artificial Neural Networks (ANNs) have been found to be an innovative approach to predict water demand. This PhD study aims to develop a novel methodology to forecast the impact of climate change on municipal water demands for a long-term time series based on the baseline period 1980-2010. It should be highlighted that, based on our knowledge, this is the first study of substantial duration, based on data collected from 1980-2010, which focuses on the associations between monthly climate change and municipal water consumption. A new approach is therefore proposed to quantifying municipal water demands through the assessment of climatic factors, using a combination of a Singular Spectrum Analysis (SSA) technique, three hybrid computational intelligence algorithms and an ANN model. These hybrid algorithms include a Lightning Search Algorithm (LSA-ANN), a Gravitational Search Algorithm (GSA-ANN) and Particle Swarm Optimisation (PSO-ANN). The SSA technique is adopted to decompose the time series of water consumption and climate variables to detect the stochastic signal for each time series. In the same context, the hybrid algorithms are used to find the best value of learning rate coefficient and the number of neurons in both hidden layers of the ANN model. Based on the performance of each hybrid algorithm, the most accurate and reliable water demand forecast model will be selected and used for estimating future water consumption. The considered environments of this study are applied in Australia and the United States from America for mitigating the uncertainty associated with the geographic location (the data of the United States of America was used to support the reliability of developing the municipal water demands prediction model). Furthermore, the Long Ashton Research Station Weather Generator (LARS-WG) model is utilised to simulate future climate factors over three periods (2011-2030, 2046-2065 and 2080-2099) based on the B1, A1B and A2 emission scenarios and seven General Circulation Models (GCMs). The future projection of these climate factors is applied directly to the impact model of water consumption to obtain the projected municipal water demand for different future periods and different greenhouse emission scenarios. The principal findings of this research are the following: from the model perspective, 1) the SSA is a powerful technique when used to remove the effect of socio-economic factors and noise, and detect the stochastic signal time series for water consumption. 2) The ANN model has better performance in term of optimising the correlation between observed and predicted water consumption when using the (LSA-ANN) algorithm. 3) The evaluation of the ANN model (using a validation data set) for Melbourne and Columbia Cities gives a correlation coefficient of 0.96 and 0.95, and the root mean square errors are 0.025 and 0.016 respectively. These findings indicate the capability of the proposed model to predict water demands with high accuracy in different continents. 4) The high performance of LARS-WG model results are found to be appropriate for the simulation of future climate variables. 5) The harmonisation between future monthly water demand (for the periods 2011-2030, 2046-2065 and 2080-2099) and stochastic signals of climate variables, relative to baseline period 1980-2010, emphasises the reliability of the present methodology. However, from the water demand perspective, the water percentage demand (WPD) are likely to rise in winter, drop in summer and fluctuate in both spring and autumn seasons for all periods and under all greenhouse emission scenarios. The results of WPD distribute between -3.5% and 3% for all periods and emission scenarios. The A2 scenario shows the highest and lowest values of WPDs compared to the A1B and B1 scenarios, in particular, in the 3rd period. The mean of seasonal WPD values shows that there is no dominant scenario as the best or the worst case of water demand over all future periods. The highest amount of seasonal demand happens in winter (A2 scenario, 3rd period), and the lowest amount of seasonal demand occurs in autumn (A1B scenario, 3rd period). In conclusion, this study facilitates the conception of the impact of climate change on municipal water demand from the baseline period 1980-2010
    corecore