3,341 research outputs found

    Electrifying Opera, Amplifying Agency: Designing a performer-controlled interactive audio system for opera singers

    Get PDF
    This artistic research project examines the artistic, technical, and pedagogical challenges of developing a performer-controlled interactive technology for real-time vocal processing of the operatic voice. As a classically trained singer-composer, I have explored ways to merge the compositional aspects of transforming electronic sound with the performative aspects of embodied singing. I set out to design, develop, and test a prototype for an interactive vocal processing system using sampling and audio processing methods. The aim was to foreground and accommodate an unamplified operatic voice interacting with the room's acoustics and the extended disembodied voices of the same performer. The iterative prototyping explored the performer's relationship to the acoustic space, the relationship between the embodied acoustic voice and disembodied processed voice(s), and the relationship to memory and time. One of the core challenges was to design a system that would accommodate mobility and allow interaction based on auditory and haptic cues rather than visual. In other words, a system allowing the singer to control their sonic output without standing behind a laptop. I wished to highlight and amplify the performer's agency with a system that would enable nuanced and variable vocal processing, be robust, teachable, and suitable for use in various settings: solo performances, various types and sizes of ensembles, and opera. This entailed mediating different needs, training, and working methods of both electronic music and opera practitioners. One key finding was that even simple audio processing could achieve complex musical results. The audio processes used were primarily combinations of feedback and delay lines. However, performers could get complex musical results quickly through continuous gestural control and the ability to route signals to four channels. This complexity sometimes led to surprising results, eliciting improvisatory responses also from singers without musical improvisation experience. The project has resulted in numerous vocal solo, chamber, and operatic performances in Norway, the Netherlands, Belgium, and the United States. The research contributes to developing emerging technologies for live electronic vocal processing in opera, developing the improvisational performance skills needed to engage with those technologies, and exploring alternatives for sound diffusion conducive to working with unamplified operatic voices. Links: Exposition and documentation of PhD research in Research Catalogue: Electrifying Opera, Amplifying Agency. Artistic results. Reflection and Public Presentations (PhD) (2023): https://www.researchcatalogue.net/profile/show-exposition?exposition=2222429 Home/Reflections: https://www.researchcatalogue.net/view/2222429/2222460 Mapping & Prototyping: https://www.researchcatalogue.net/view/2222429/2247120 Space & Speakers: https://www.researchcatalogue.net/view/2222429/2222430 Presentations: https://www.researchcatalogue.net/view/2222429/2247155 Artistic Results: https://www.researchcatalogue.net/view/2222429/222248

    Computers in Support of Musical Expression

    Get PDF

    Herding cats: observing live coding in the wild

    Get PDF
    After a momentous decade of live coding activities, this paper seeks to explore the practice with the aim of situating it in the history of contemporary arts and music. The article introduces several key points of investigation in live coding research and discusses some examples of how live coding practitioners engage with these points in their system design and performances. In the light of the extremely diverse manifestations of live coding activities, the problem of defining the practice is discussed, and the question raised whether live coding will actually be necessary as an independent category

    Interaction Design for Digital Musical Instruments

    Get PDF
    The thesis aims to elucidate the process of designing interactive systems for musical performance that combine software and hardware in an intuitive and elegant fashion. The original contribution to knowledge consists of: (1) a critical assessment of recent trends in digital musical instrument design, (2) a descriptive model of interaction design for the digital musician and (3) a highly customisable multi-touch performance system that was designed in accordance with the model. Digital musical instruments are composed of a separate control interface and a sound generation system that exchange information. When designing the way in which a digital musical instrument responds to the actions of a performer, we are creating a layer of interactive behaviour that is abstracted from the physical controls. Often, the structure of this layer depends heavily upon: 1. The accepted design conventions of the hardware in use 2. Established musical systems, acoustic or digital 3. The physical configuration of the hardware devices and the grouping of controls that such configuration suggests This thesis proposes an alternate way to approach the design of digital musical instrument behaviour – examining the implicit characteristics of its composite devices. When we separate the conversational ability of a particular sensor type from its hardware body, we can look in a new way at the actual communication tools at the heart of the device. We can subsequently combine these separate pieces using a series of generic interaction strategies in order to create rich interactive experiences that are not immediately obvious or directly inspired by the physical properties of the hardware. This research ultimately aims to enhance and clarify the existing toolkit of interaction design for the digital musician

    An evaluation of the Wii Nunchuk as an alternative assistive device for people with intellectual and physical disabilities using switch controlled software

    Get PDF
    Many people with intellectual disabilities also have physical difficulties which prevent them from using standard computer control devices. Custom made alternative devices for those with special needs can be expensive and the low unit turnover makes the prospect unattractive to potential manufacturers. One solution is to explore the potential of devices used in contemporary gaming technology, such as the Nintendo Wii. The Wii Nunchuk has the potential to replace joystick functions with the advantages of not being surface bound and easier for some individuals to grasp. This study evaluated the feasibility of using the Nunchuk by comparing its performance as a switch with the participant's usual switch. Twenty three volunteers aged between 17 and 21 with intellectual and physical disabilities completed a Single Switch Performance Test using the new device and their familiar device. For most functions of the switch, there was no significant difference between the participants' performance using the Nunchuck and their familiar device. Additional analysis found that some participants' performance did improve whilst using the Nunchuck, but this was not significantly related to physical or cognitive ability. Those whose performance was better with the Nunchuk were more likely to hold it in the conventional way than were those who had better performance with their familiar device. This merits it being offered as a possible alternative to currently available switches for those with physical difficulties affecting their grip
    corecore