1,623 research outputs found

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms

    Color-decoupled photo response non-uniformity for digital image forensics

    Get PDF
    The last few years have seen the use of photo response non-uniformity noise (PRNU), a unique fingerprint of imaging sensors, in various digital forensic applications such as source device identification, content integrity verification and authentication. However, the use of a colour filter array for capturing only one of the three colour components per pixel introduces colour interpolation noise, while the existing methods for extracting PRNU provide no effective means for addressing this issue. Because the artificial colours obtained through the colour interpolation process is not directly acquired from the scene by physical hardware, we expect that the PRNU extracted from the physical components, which are free from interpolation noise, should be more reliable than that from the artificial channels, which carry interpolation noise. Based on this assumption we propose a Couple-Decoupled PRNU (CD-PRNU) extraction method, which first decomposes each colour channel into 4 sub-images and then extracts the PRNU noise from each sub-image. The PRNU noise patterns of the sub-images are then assembled to get the CD-PRNU. This new method can prevent the interpolation noise from propagating into the physical components, thus improving the accuracy of device identification and image content integrity verification

    Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier

    Get PDF
    Accurate diagnosis of pathological brain images is important for patient care, particularly in the early phase of the disease. Although numerous studies have used machine-learning techniques for the computer-aided diagnosis (CAD) of pathological brain, previous methods encountered challenges in terms of the diagnostic efficiency owing to deficiencies in the choice of proper filtering techniques, neuroimaging biomarkers, and limited learning models. Magnetic resonance imaging (MRI) is capable of providing enhanced information regarding the soft tissues, and therefore MR images are included in the proposed approach. In this study, we propose a new model that includes Wiener filtering for noise reduction, 2D-discrete wavelet transform (2D-DWT) for feature extraction, probabilistic principal component analysis (PPCA) for dimensionality reduction, and a random subspace ensemble (RSE) classifier along with the K-nearest neighbors (KNN) algorithm as a base classifier to classify brain images as pathological or normal ones. The proposed methods provide a significant improvement in classification results when compared to other studies. Based on 5Ă—5 cross-validation (CV), the proposed method outperforms 21 state-of-the-art algorithms in terms of classification accuracy, sensitivity, and specificity for all four datasets used in the study

    An Experimental Study on Speech Enhancement Based on a Combination of Wavelets and Deep Learning

    Get PDF
    The purpose of speech enhancement is to improve the quality of speech signals degraded by noise, reverberation, or other artifacts that can affect the intelligibility, automatic recognition, or other attributes involved in speech technologies and telecommunications, among others. In such applications, it is essential to provide methods to enhance the signals to allow the understanding of the messages or adequate processing of the speech. For this purpose, during the past few decades, several techniques have been proposed and implemented for the abundance of possible conditions and applications. Recently, those methods based on deep learning seem to outperform previous proposals even on real-time processing. Among the new explorations found in the literature, the hybrid approaches have been presented as a possibility to extend the capacity of individual methods, and therefore increase their capacity for the applications. In this paper, we evaluate a hybrid approach that combines both deep learning and wavelet transformation. The extensive experimentation performed to select the proper wavelets and the training of neural networks allowed us to assess whether the hybrid approach is of benefit or not for the speech enhancement task under several types and levels of noise, providing relevant information for future implementations.UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctric

    Offline and real time noise reduction in speech signals using the discrete wavelet packet decomposition

    Get PDF
    This thesis describes the development of an offline and real time wavelet based speech enhancement system to process speech corrupted with various amounts of white Gaussian noise and other different noise types

    Local-set-based Graph Signal Reconstruction

    Full text link
    Signal processing on graph is attracting more and more attentions. For a graph signal in the low-frequency subspace, the missing data associated with unsampled vertices can be reconstructed through the sampled data by exploiting the smoothness of the graph signal. In this paper, the concept of local set is introduced and two local-set-based iterative methods are proposed to reconstruct bandlimited graph signal from sampled data. In each iteration, one of the proposed methods reweights the sampled residuals for different vertices, while the other propagates the sampled residuals in their respective local sets. These algorithms are built on frame theory and the concept of local sets, based on which several frames and contraction operators are proposed. We then prove that the reconstruction methods converge to the original signal under certain conditions and demonstrate the new methods lead to a significantly faster convergence compared with the baseline method. Furthermore, the correspondence between graph signal sampling and time-domain irregular sampling is analyzed comprehensively, which may be helpful to future works on graph signals. Computer simulations are conducted. The experimental results demonstrate the effectiveness of the reconstruction methods in various sampling geometries, imprecise priori knowledge of cutoff frequency, and noisy scenarios.Comment: 28 pages, 9 figures, 6 tables, journal manuscrip

    A SURE Approach for Digital Signal/Image Deconvolution Problems

    Get PDF
    In this paper, we are interested in the classical problem of restoring data degraded by a convolution and the addition of a white Gaussian noise. The originality of the proposed approach is two-fold. Firstly, we formulate the restoration problem as a nonlinear estimation problem leading to the minimization of a criterion derived from Stein's unbiased quadratic risk estimate. Secondly, the deconvolution procedure is performed using any analysis and synthesis frames that can be overcomplete or not. New theoretical results concerning the calculation of the variance of the Stein's risk estimate are also provided in this work. Simulations carried out on natural images show the good performance of our method w.r.t. conventional wavelet-based restoration methods

    De-Noising of Apple Fruit Images using Dilated Convolution Neural Network model with Mixed Activation Function

    Get PDF
    In the agricultural sector, fruit diseases contribute to substantial economic losses, emphasizing the need for effective disease detection methods. Image processing techniques play a crucial role in minimizing damage and financial losses. Pre-processing, a vital stage in image processing, involves noise elimination and quality enhancement, laying the groundwork for subsequent tasks such as segmentation, classification, and disease detection. This study focuses on, proposing a novel approach for denoising diseased apple fruit images using the Dilated Convolution Neural Network model with Mixed Activation Function (DCNMAF). Performance evaluation, utilizing metrics like PSNR and SSIM, highlights the superiority of the proposed model over existing methods. These advancements underscore the effectiveness of the proposed DCNMAF model, showcasing notable enhancements in both accuracy metrics
    • …
    corecore