16 research outputs found

    Isometric Finger Pose Recognition with Sparse Channel SpatioTemporal EMG Imaging

    Full text link
    © 2018 IEEE. High fidelity myoelectric control of prostheses and orthoses isparamount to restoring lost function to amputees and neuro-muscular disease sufferers. In this study we prove that patio-temporal imaging can be used to allow convolutional neural networks to classify sparse channel EMG samples from a consumer-grade device with over 94% accuracy. 10,572 images are generated from 960 samples of simple and complex isometric finger poses recorded from 4 fully intact subjects. Real-time classification of 12 poses is achieved with a 250ms continuous overlapping window

    Rakeness-based Compressed Sensing of Surface ElectroMyoGraphy for Improved Hand Movement Recognition in the Compressed Domain

    Get PDF
    Surface electromyography (sEMG) waveforms are widely used to generate control signals in several application areas, ranging from prosthetic to consumer electronics. Classically, such waveforms are acquired at Nyquist rate and digitally transmitted trough a wireless channel to a decision/actuation node. This causes large energy consumption and is incompatible with the implementation of ultra-low power acquisition nodes. We already proposed Compressed Sensing (CS) as a low-complexity method to achieve substantial energy saving by reducing the size of data to be transmitted while preserving the information content. We here make a significant leap forward by showing that hand movements recognition task can be performed directly in the compressed domain with a success rate greater than 98 % and with a reduction of the number of transmitted bits by two order of magnitude with respect to row data

    From Unimodal to Multimodal: improving the sEMG-Based Pattern Recognition via deep generative models

    Full text link
    Multimodal hand gesture recognition (HGR) systems can achieve higher recognition accuracy. However, acquiring multimodal gesture recognition data typically requires users to wear additional sensors, thereby increasing hardware costs. This paper proposes a novel generative approach to improve Surface Electromyography (sEMG)-based HGR accuracy via virtual Inertial Measurement Unit (IMU) signals. Specifically, we trained a deep generative model based on the intrinsic correlation between forearm sEMG signals and forearm IMU signals to generate virtual forearm IMU signals from the input forearm sEMG signals at first. Subsequently, the sEMG signals and virtual IMU signals were fed into a multimodal Convolutional Neural Network (CNN) model for gesture recognition. To evaluate the performance of the proposed approach, we conducted experiments on 6 databases, including 5 publicly available databases and our collected database comprising 28 subjects performing 38 gestures, containing both sEMG and IMU data. The results show that our proposed approach outperforms the sEMG-based unimodal HGR method (with increases of 2.15%-13.10%). It demonstrates that incorporating virtual IMU signals, generated by deep generative models, can significantly enhance the accuracy of sEMG-based HGR. The proposed approach represents a successful attempt to transition from unimodal HGR to multimodal HGR without additional sensor hardware

    Variational Autoencoder and Sensor Fusion for Robust Myoelectric Controls

    Get PDF
    Myoelectric control schemes aim to utilize the surface electromyography (EMG) signals which are the electric potentials directly measured from skeletal muscles to control wearable robots such as exoskeletons and prostheses. The main challenge of myoelectric controls is to increase and preserve the signal quality by minimizing the effect of confounding factors such as muscle fatigue or electrode shift. Current research in myoelectric control schemes are developed to work in ideal laboratory conditions, but there is a persistent need to have these control schemes be more robust and work in real-world environments. Following the manifold hypothesis, complexity in the world can be broken down from a high-dimensional space to a lower-dimensional form or representation that can explain how the higher-dimensional real world operates. From this premise, the biological actions and their relevant multimodal signals can be compressed and optimally pertinent when performed in both laboratory and non-laboratory settings once the learned representation or manifold is discovered. This thesis outlines a method that incorporates the use of a contrastive variational autoencoder with an integrated classifier on multimodal sensor data to create a compressed latent space representation that can be used in future myoelectric control schemes

    Robust Signal Processing Techniques for Wearable Inertial Measurement Unit (IMU) Sensors

    Get PDF
    Activity and gesture recognition using wearable motion sensors, also known as inertial measurement units (IMUs), provides important context for many ubiquitous sensing applications including healthcare monitoring, human computer interface and context-aware smart homes and offices. Such systems are gaining popularity due to their minimal cost and ability to provide sensing functionality at any time and place. However, several factors can affect the system performance such as sensor location and orientation displacement, activity and gesture inconsistency, movement speed variation and lack of tiny motion information. This research is focused on developing signal processing solutions to ensure the system robustness with respect to these factors. Firstly, for existing systems which have already been designed to work with certain sensor orientation/location, this research proposes opportunistic calibration algorithms leveraging camera information from the environment to ensure the system performs correctly despite location or orientation displacement of the sensors. The calibration algorithms do not require extra effort from the users and the calibration is done seamlessly when the users present in front of an environmental camera and perform arbitrary movements. Secondly, an orientation independent and speed independent approach is proposed and studied by exploring a novel orientation independent feature set and by intelligently selecting only the relevant and consistent portions of various activities and gestures. Thirdly, in order to address the challenge that the IMU is not able capture tiny motion which is important to some applications, a sensor fusion framework is proposed to fuse the complementary sensor modality in order to enhance the system performance and robustness. For example, American Sign Language has a large vocabulary of signs and a recognition system solely based on IMU sensors would not perform very well. In order to demonstrate the feasibility of sensor fusion techniques, a robust real-time American Sign Language recognition approach is developed using wrist worn IMU and surface electromyography (EMG) sensors

    A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors

    No full text

    Robust Signal Processing Techniques for Wearable Inertial Measurement Unit (IMU) Sensors

    Get PDF
    Activity and gesture recognition using wearable motion sensors, also known as inertial measurement units (IMUs), provides important context for many ubiquitous sensing applications including healthcare monitoring, human computer interface and context-aware smart homes and offices. Such systems are gaining popularity due to their minimal cost and ability to provide sensing functionality at any time and place. However, several factors can affect the system performance such as sensor location and orientation displacement, activity and gesture inconsistency, movement speed variation and lack of tiny motion information. This research is focused on developing signal processing solutions to ensure the system robustness with respect to these factors. Firstly, for existing systems which have already been designed to work with certain sensor orientation/location, this research proposes opportunistic calibration algorithms leveraging camera information from the environment to ensure the system performs correctly despite location or orientation displacement of the sensors. The calibration algorithms do not require extra effort from the users and the calibration is done seamlessly when the users present in front of an environmental camera and perform arbitrary movements. Secondly, an orientation independent and speed independent approach is proposed and studied by exploring a novel orientation independent feature set and by intelligently selecting only the relevant and consistent portions of various activities and gestures. Thirdly, in order to address the challenge that the IMU is not able capture tiny motion which is important to some applications, a sensor fusion framework is proposed to fuse the complementary sensor modality in order to enhance the system performance and robustness. For example, American Sign Language has a large vocabulary of signs and a recognition system solely based on IMU sensors would not perform very well. In order to demonstrate the feasibility of sensor fusion techniques, a robust real-time American Sign Language recognition approach is developed using wrist worn IMU and surface electromyography (EMG) sensors
    corecore